Using the relative atomic weights of both copper and sulfur ie copper = 63.55 and sulfur is 32.06 so 63.55+32.06=95.56 total mass and so of this, copper = 63.55/95.56=66.4%. So to get 10 grams of copper, use the formula 10g=66.4%xCuS so CuS=10/0.664=15.06 grams of CuS.
Answer:
Loses
Explanation:
liquid changes into solid, heat is released. The energy released upon freezing, known as the enthalpy of fusion, is a latent heat, and is exactly the same as the energy required to melt the same amount of the solid.
Answer:
a) ammonium ion
b) amide ion
Explanation:
The order of decreasing bond angles of the three nitrogen species; ammonium ion, ammonia and amide ion is NH4+ >NH3> NH2-. Next we need to rationalize this order of decreasing bond angles from the valence shell electron pair repulsion (VSEPR) theory perspective.
First we must realize that all three nitrogen species contain a central sp3 hybridized carbon atom. This means that a tetrahedral geometry is ideally expected. Recall that the presence of lone pairs distorts molecular structures from the expected geometry based on VSEPR theory.
The amide ion contains two lone pairs of electrons. Remember that the presence of lone pairs causes greater repulsion than bond pairs on the outermost shell of the central atom. Hence, the amide ion has the least H-N-H bond angle of about 105°.
The ammonia molecule contains one lone pair, the repulsion caused by one lone pair is definitely bless than that caused by two lone pairs of electrons hence the bond angle of the H-N-H bond in ammonia is 107°.
The ammonium ion contains four bond pairs and no lone pair of electrons on the outermost nitrogen atom. Hence we expect a perfect tetrahedron with bond angle of 109°.
<span>Opening a can of paint requires a screwdriver or other machine to pry open the lid. The screwdriver affect the force applied to opening the lid. The answer is : </span><span>B. It increases the applied force and changes its distance and direction.</span>