<span>Among the given choices, the third option is the only one which illustrates single replacement.
(3)H2SO4 + Mg --> H2 + MgSO4
A single replacement is also termed as single-displacement reaction, a reaction by which an element in a compound, displaces another element.
It can be illustrated this way:
X + Y-Z → X-Z + Y</span>
Answer: Matter is heated, and its particles spread out more
Explanation:
Thermal expansion occurs when there's an expansion of an object or material or when an object becomes bigger because of a rise in its temperature. This brings about the faster movement of the heated molecules and the atoms spreading out.
Therefore, the cause and effect of thermal expansion will be that when matter is heated, and its particles spread out more.
The question is missing the data sets.
This is the complete question:
A single penny has a mass of 2.5 g. Abbie and James
each measure the mass of a penny multiple times. Which statement about
these data sets is true?
O Abbie's measurements are both more accurate
and more precise than James'.
O Abbie's measurements are more accurate,
but less precise, than James'.
O Abbie's measurements are more precise,
but less accurate, than James'.
O Abbie’s measurements are both less
accurate and less precise than James'.
Penny masses (g)
Abbie’s data
2.5, 2.4, 2.3, 2.4, 2.5, 2.6, 2.6
James’ data
2.4, 3.0, 3.3, 2.2, 2.9, 3.8, 2.9
Answer: first option, Abbie's measurements are both more accurate
and more precise than James'.
Explanation:
1) To answer this question, you first must understand the difference between precision and accuracy.
<span>Accuracy is how close the data are to the true or accepted value.
</span>
<span>Precision is how close are the data among them, this is the reproducibility of the values.</span>
Then, you can measure the accuracy by comparing the means (averages) with the actual mass of a penny 2.5 g.
And you measure the precision by comparing a measure of spread, as it can be the standard deviation.
2) These are the calculations:
Abbie’s data
Average: ∑ of the values / number of values
Average = [2.5 + 2.4 + 2.3 + 2.4 + 2.5 + 2.6 + 2.6 ] / 7 = 2.47 ≈ 2.5
Standard deviation: √ [ ∑ (x - mean)² / (n - 1) ] = 0.11
James’ data
Average = [2.4 + 3.0 + 3.3 + 2.2 + 2.9 + 3.8 + 2.9] / 7 = 2.56 ≈ 2.6
Standard deviation = 0.53
3) Conclusions:
1) The average of Abbie's data are closer to the accepted value 2.5g, so they are more accurate.
2) The standard deviation of Abbie's data is smaller than that of Jame's data, so the Abbie's data are more precise.