Answer:
337.5m
Explanation:
<u>Kinematics</u>
Under constant acceleration, the kinematic equation holds:
, where "s" is the position at time "t", "a" is the constant acceleration, "
" is the initial velocity, and
is the initial position.
<u>Defining Displacement</u>
Displacement is the difference in positions:
or 



<u>Using known information</u>
Given that the initial velocity is zero ("skier stands at rest"), and zero times anything is zero, and zero plus anything remains unchanged, the equation simplifies further to the following:




So, to find the displacement after 15 seconds, with a constant acceleration of 3.0 m/s², substitute the known values, and simplify:

![\Delta s=\frac{1}{2}(3.0[\frac{m}{s^2}])(15.0[s])^2](https://tex.z-dn.net/?f=%5CDelta%20s%3D%5Cfrac%7B1%7D%7B2%7D%283.0%5B%5Cfrac%7Bm%7D%7Bs%5E2%7D%5D%29%2815.0%5Bs%5D%29%5E2)
![\Delta s=337.5[m]](https://tex.z-dn.net/?f=%5CDelta%20s%3D337.5%5Bm%5D)
Answer: 12.0 m/s^2
Explanation:
Let
be the angular acceleration of the end of the rod
Taking torque about the link, we have:

Torque is also given in terms of moment of inertia of the rod and its angular acceleration i.e.

From equations (i) and (ii) we have:

The acceleration of the end of the rod farthest from the link is given by:

Answer;
- This statement about matter and its behavior is best classified as a Law.
-It is the Law of Universal Gravitation.
Explanation;
-The Law of Universal Gravitation states that every point mass attracts every other point mass in the universe by a force pointing in a straight line between the centers-of-mass of both points, and this force is proportional to the masses of the objects and inversely proportional to their separation.This attractive force always points inward, from one point to the other.
-The Law applies to all objects with masses, big or small. Two big objects can be considered as point-like masses, if the distance between them is very large compared to their sizes or if they are spherically symmetric.