1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
3 years ago
9

Consider a cylindrical segment of a blood vessel 2.70 cm long and 3.10 mm in diameter. What additional outward force would such

a vessel need to withstand in the person's feet compared to a similar vessel in her head
Physics
1 answer:
Lyrx [107]3 years ago
5 0

This question is incomplete, the complete question is;

- Calculate the difference in blood pressure between the feet and top of the head of a person who is 1.80m Tall

- Consider a cylindrical segment of a blood vessel 2.70 cm long and 3.10 mm in diameter. What additional outward force would such a vessel need to withstand in the person's feet compared to a similar vessel in her head

Answer:

- the difference in blood pressure is 18698.4 Pa

- the additional outward force F is 4.86 N

Explanation:

Given the data in the question;

we know that the expression for difference in blood pressure is;

ΔP = pgh

where p is density = 1060 kg/m³

g is acceleration due to gravity  = 9.8 m/s²

and h is height = 1.80 m

now we substitute

ΔP = 1060 × 9.8 × 1.80

ΔP = 18698.4 Pa

therefore the difference in blood pressure is 18698.4 Pa

Also given that;

diameter of blood vessel d = 3.10 mm

radius r = 3.10 mm / 2 = 1.55 mm = 0.00155 m

length l = 2.70 cm = 0.027 m

Surface area of the cylindrical segment of a blood vessel is

A = 2πrl

we substitute

A = 2 × π × 0.00155 × 0.027

A = 2.6 × 10⁻⁴ m²

so

the required for will be;

F = PA

we substitute

F = 18698.4 Pa × 2.6 × 10⁻⁴ m²

F = 4.86 N

Therefore, the additional outward force F is 4.86 N

You might be interested in
A packet is dropped from a stationary helicopter, hovering at a height 'h' from the ground level, reaches the ground in 12s. Cal
Ksju [112]
Use kinematic equations to solve:

1) yf = yo + vo*t + 1/2at²

yf = final height
yo = initial height
vo = initial velocity
a = acceleration
t = time

yf - yo = vo*t + 1/2at²

yf - yo = h

vo = 0

Thus,

h = 1/2at²

h = 1/2(9.8)(12)² = 705.6 m

2) vf = vo + at

vo = 0

Thus,

vf = at

vf = (9.8)(12) = 117.6 m/s
4 0
3 years ago
To determine the height of a tall building such as Sears Tower in Chicago, Illinois a ball was dropped from the top of the build
Darya [45]

Answer:

The height of Sears Tower is 1448.5 feet.

Explanation:

<h3>We apply the free fall formula to the ball: </h3><h3>y=v_{o} *t+\frac{1}{2} *g*t^{2}</h3><h3>y: The vertical distance the ball moves at time t  </h3><h3>v_{o}i: Initial speed </h3><h3>g=Gravity acceleration=9.8*(\frac{\frac{1ft}{0.305m} }{s^{2} } )</h3>

Known information

We know that the vertical distance (y) that the ball moves in 9,5s  is equal to height of Sears Tower (h).  

Too we know that the ball is released from rest, then,v_{0}=0

Height of Sears Tower calculation:

We replace  in the equation 1 the data following;

y=h

v_{o} =0

g=32,1\frac{ft}{s^{2} }

t= 9,5s

h=0*9.5+\frac{1}{2} *32.1*9.5^{2}

h=1448.5 ft

Answer: The height of Sears Tower is 1448.5 ft

6 0
3 years ago
It is easier to climb up a slanted slope than a vertical slope
V125BC [204]

IT IS EASIER TO CLIMB A SLANTED SLOPE

3 0
3 years ago
Read 2 more answers
In a lab, four balls have the same velocities but different masses.
olya-2409 [2.1K]

Answer:

New Momentum of Ball B=13.2 \frac{\mathrm{kgm}}{\mathrm{s}}

<u>Explanation:</u>

Given:

Mass of Ball A=1kg

Mass of Ball B= 2kg

Mass of Ball C=5kg

Mass of Ball D=7kg

Velocities of A=B=C=D=2.2\frac{m}{s}

Momentum of Ball A=2.2\frac{k g m}{s}

Momentum of Ball B=4.4 \frac{k g m}{s}

Momentum of Ball C=11\frac{k g m}{s}

Momentum of Ball D=15\frac{k g m}{s}

To Find:

Change in Momentum When of Ball B gets tripled

Solution:

Though all balls have same velocity, thus we get

Velocities of A=B=C=D=2.2\frac{m}{s}

Initial Momentum of Ball B=4.4\frac{k g m}{s}

If the Mass of Ball B gets tripled;

We get New Mass of Ball B=3×Actual Mass of the ball

                                            =3×2=6kg

Thus we get Mass of Ball B=6kg

According to the formula,  

Change in momentum of Ball B \Delta p=m \times \Delta v

Where \Delta p=change in momentum

          m=mass of the ball B

         \Delta v=change in velocity ball B

And \Delta v=v, since all balls, have same velocity

Thus the above equation, changes to

         \Delta p=m \times v

Substitute all the values in the above equation we get

         \Delta p=6 \times 2.2

                     =13.2 \frac{\mathrm{kgm}}{\mathrm{s}}  

Result:

 Thus the New Momentum of ball B=13.2 \frac{\mathrm{kgm}}{\mathrm{s}}

3 0
3 years ago
Read 2 more answers
Snow and sleet when they fall to the ground is solar energy or gravitational force?
Nikolay [14]

Gravitational energy

3 0
3 years ago
Other questions:
  • During a car collision, the knee, thighbone, and hip can sustain a force no greater than 4000 N/ Forces that exceed this amount
    6·1 answer
  • Can u answer 4 and 5 for me
    11·1 answer
  • an archer stands 40.0m from the target. if the arrow is shot horizontally with a velocity of 90.0 m/s, how far above the bull's
    13·1 answer
  • How many photons are emitted per second by a He−Ne laser that emits 1.5 mW of power at a wavelength λ=632.8nm. What is the frequ
    14·1 answer
  • One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a s
    7·1 answer
  • Pluto was first observed in 1930, and its largest moon, Charon, was discovered in 1978. A few years after Charon’s discovery, as
    12·1 answer
  • What can i do to recycle?
    9·1 answer
  • Can someone plz help me :'(
    7·2 answers
  • Why does balloon pop in the sun? ​
    5·1 answer
  • Write a beta decay equation for the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!