Answer:
Step-by-step explanation:
You can start by recognizing 19/12π = π +7/12π, so the desired sine is ...
sin(19/12π) = -sin(7/12π) = -(sin(3/12π +4/12π)) = -sin(π/4 +π/3)
-sin(π/4 +π/3) = -sin(π/4)cos(π/3) -cos(π/4)sin(π/3)
Of course, you know that ...
sin(π/4) = cos(π/4) = (√2)/2
cos(π/3) = 1/2
sin(π/3) = (√3)/2
So, the desired value is ...
sin(19π/12) = -(√2)/2×1/2 -(√2)/2×(√3/2) = -(√2)/4×(1 +√3)
Comparing this form to the desired answer form, we see ...
A = 2
B = 3
Answer:If you would like to know what will the approximate population be after 3 years, you can calculate this using the following steps:
an initial population ... 298 quail
an annual rate ... 8%
an exponential function to model the quail population:
f = 298(1+8%)^t = 298(1+8/100)^t
f ... quail population
t ... time (years)
t = 3 years
f = 298(1+8/100)^t = 298(1.08)^3 = 375.4 quail
375.4 quail after 3 years.
The length of side walk is 500 feet
<em><u>Solution:</u></em>
Given that, A rectangle park measures 300 ft by 400 ft
Length = 300 feet
Width = 400 feet
A sidewalk runs diagonally from one comer to the opposite corner
We have to find the length of side walk
Which means, we have to find the length of diagonal of rectangle
<em><u>The diagonal of rectangle is given by formula:</u></em>

Where,
d is the length of diagonal
w is the width and l is the length of rectangle
<em><u>Substituting the values in formula, we get</u></em>

Thus length of side walk is 500 feet
M=123 degrees g=81 degrees f=99 degrees k=57 degrees q=81 degrees s=42 degrees h=123 degrees p=99 degrees r=57 degrees v=123 degrees u=57 degrees
<span>1 and 2. Taneisha can send as few as 0 texts, or n>=0.
3 and 4. Taneisha can send as many as 300 texts in a month, or n<=300.
5. In this case, n>=0 and n<=300.
6. Putting these in compound form to make them one statement gives 0 <= n <= 300.</span>