Answer:
Part A. The half-cell B is the cathode and the half-cell A is the anode
Part B. 0.017V
Explanation:
Part A
The electrons must go from the anode to the cathode. At the anode oxidation takes place, and at the cathode a reduction, so the flow of electrons must go from the less concentrated solution to the most one (at oxidation the concentration intends to increase, and at the reduction, the concentration intends to decrease).
So, the half-cell B is the cathode and the half-cell A is the anode.
Part B
By the Nersnt equation:
E°cell = E° - (0.0592/n)*log[anode]/[cathode]
Where n is the number of electrons being changed in the reaction, in this case, n = 2 (Sn goes from S⁺²). Because the half-reactions are the same, the reduction potential of the anode is equal to the cathode, and E° = 0 V.
E°cell = 0 - (0.0592/2)*log(0.23/0.87)
E°cell = 0.017V
Answer:
128g
Explanation:
Given parameters:
Mass of carbon = 48g
Mass of carbon dioxide = 176g
Unknown:
Mass of oxygen that reacted = ?
Solution:
Every chemical reaction must obey the law of conservation of mass. It states that "in a chemical reaction, matter is neither created nor destroyed" .
So;
Mass of carbon + Mass of oxygen = Mass of carbon dioxide
Mass of oxygen = Mass of carbon dioxide - Mass of carbon
Mass of oxygen = 176 - 48 = 128g
Should be their masses. Because t<span>he strength of the gravitational force between two objects depends on two factors, mass and </span>distance<span>. the force of gravity the masses exert on each other. If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases.</span>
Plasma membrane is the answer
<span><span>S is for soil,</span><span>cl (sometimes c) represents climate,</span><span>o organisms including humans,</span><span>r relief,</span><span>p parent material, or lithology, and</span><span>t time.</span></span>