Answer: Out of the given options
is expected to have the highest viscosity.
Explanation:
The resistance occurred in the flow of a liquid substance is called viscosity.
More stronger is the intermolecular forces present in a substance more will be its resistance in its flow. Hence, more will be its viscosity.
For example,
has strong intermolecular hydrogen bonding than the one's present in
and
. This is because two-OH groups are present over here.
Thus, we can conclude that out of the given options
is expected to have the highest viscosity.
Answer:
Polymerization.
Explanation:
Polymerization can be defined as a type of chemical reaction in which molecules that are relatively small in size chemically combine to form a huge chain of molecules.
Simply stated, polymerization refers to a chemical reaction where two or more smaller molecules react to produce larger molecules of the same network or repetitive structural units.
In polymerization, the relatively small molecules are generally referred to as monomers while the larger molecules they produce are known as polymers.
Polymerization is given by the chemical formula;
nA -----> A(n).
In this scenario, Luis uses a stencil to repeat the same design on each wall to form one long grapevine with a bunch of grapes every foot along its length.
Hence, the type of chemical reaction this best model is polymerization because it involved repeating the same design (monomers) to form a long grapevine with a bunch of grapes (polymers).
Answer:
0.68
Explanation:
Number of moles is directly propotionalto the volume at standard condition.
The scientist thought that the
atom was the smallest particle in the universe is John Dalton. He established
the atomic theory which consists of five; elements are made of extremely small
particles called atoms, atoms of different element have different sizes, mass
and physic – chemical properties, atoms cannot be divided further, destroyed or
created, atoms can combine to form compounds and in chemical reaction, atoms
can be combined, separated or rearranged.