Answer:
, 
Explanation:
Temperature of the gas is defined as the degree of hotness or coldness of a body. It is expressed in units like
and
These units of temperature are inter convertible.
We are given:
Temperature of the gas =
Converting this unit of temperature into
by using conversion factor:
Converting this unit of temperature into
by using conversion factor:

Thus the temperature on the Celsius and Kelvin scales are
and
respectively.
All the conversions have a net value of 1
Answer:
3.18 (w/w) %
Explanation:
In the problem, you can find mass of NaClO knowing the reaction of NaClO with Na₂S₂O₃ is:
NaClO + 2Na₂S₂O₃ + H₂O → NaCl + Na₂S₄O₆ +2NaOH + NaCl
<em>Where 1 mole of NaClO reacts with 2 moles of Na₂S₂O₃</em>
<em> </em>Moles of thiosulfate in the titration are:
0.0101L ₓ (0.042mol / L) = 4.242x10⁻⁴ moles of Na₂S₂O₃
Thus, moles of NaClO in the initial solution are:
4.242x10⁻⁴ moles of Na₂S₂O₃ ₓ (1mol NaClO / 2 mol Na₂S₂O₃) = 2.121x10⁻⁴ moles NaClO
As molar mass of NaClO is 74.44g/mol, mass of 2.121x10⁻⁴ moles are:
2.121x10⁻⁴ moles ₓ (74.44g / mol) = <em>0.0158g of NaClO</em>
As mass of bleach is 0.496g, mass percent is:
0.0158g NaClO / 0.496g bleach ₓ 100 =
<h3>3.18 (w/w) % </h3>
Total of 127.013 C of charge is passed
Given
weight of Ag solution before current has passed = 1.7854 g
weight of Ag solution after current has passed = 1.8016 g
Molecular mass of Ag = 107.86 g
Faraday's Constant = 96485
First of all we have to apply Faraday's First Law of Electrolysis i.e
m = ZQ
where
Z is propotionality constant (g/C)
Q is charge (C)
Hence,
Z = Atomic mass of substance/ Faraday's Constant
= 
= 0.0011178 g/C
Now ,
change in mass before and after the passing of current (Δm)
Δm = 1.8016g-1.7854g
= 0.0162g
Now amount of coulombs passed = 
amount of coulombs passed = 127.03524 C
Thus from the above conclusion we can say that amount of coulombs have passed is 127.03524 C
Learn more about Electrolysis here: brainly.com/question/16929894
#SPJ4
Sorry, haven't came across that as of yet.