CH and O is the reactants while CO and H2O is the products
Answer:
When ice changes into liquid water it melts. The solidified ice in the frozen, would melt via the burning sun shooting its streaks down at the ice. Which causes the ice to melt, and turn into liquid water.
Explanation:
pp poopoo
Answer:
Q = 30355.2 J
Explanation:
Given data:
Mass of ice = 120 g
Initial temperature = -5°C
Final temperature = 115°C
Energy required = ?
Solution:
Specific heat capacity of ice is = 2.108 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 -T1
ΔT = 115 - (-5°C)
ΔT = 120 °C
Q = 120 g × 2.108 j/g.°C × 120 °C
Q = 30355.2 J
Answer:
First 1-5 in pics
I can't upload further reactions
Explanation:
- sandmeyer's reaction
- swarts reaction
- Finkelstein reaction
- wurtz reaction
- reimer teimann reaction
6. Lucas test
ROH + Zncl2 +HCl ---> RCl + H2O
7. esterification
R-OH +R’-COOH +H+↔ R’-COOR
Answer:
![[I_2]=[Br]=0.31M](https://tex.z-dn.net/?f=%5BI_2%5D%3D%5BBr%5D%3D0.31M)
Explanation:
Hello there!
In this case, according to the given information, it is possible for us to set up the following chemical equation at equilibrium:

Now, we can set up the equilibrium expression in terms of x (reaction extent) whereas the initial concentration of both iodine and bromine is 0.5mol/0.250L=2.0M:
![K=\frac{[IBr]^2}{[I_2][Br_2]} \\\\1.2x10^2=\frac{(2x)^2}{(2.0-x)^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%5C%5C%5C%5C1.2x10%5E2%3D%5Cfrac%7B%282x%29%5E2%7D%7B%282.0-x%29%5E2%7D)
Thus, we solve for x as show below:

Therefore, the concentrations of both bromine and iodine are:
![[I_2]=[Br]=2.0M-1.69M=0.31M](https://tex.z-dn.net/?f=%5BI_2%5D%3D%5BBr%5D%3D2.0M-1.69M%3D0.31M)
Regards!