Circle a 2 by 3 area (6 squares) on the array. 0 0 0
0 0 0
1. substracting problems
2. problems
For this case we have the following scenario:
Carlos enrolled in a gym to play sports. Carlos pays a fee for the registration and must pay 1 dollar for each day he trains in the gym. Write an equation that models the problem.
The equation that models the problem is:
y = x + 1.
The slope of the line is 1 and represents the payment of 1 dollar for each day trained.
The intersection with the y axis is 1 and represents the payment of 1 dollar for the initial inscription.
Answer:
![= > {x}^{2} + {y}^{2} + 6x - 14y + 49 = 0](https://tex.z-dn.net/?f=%20%3D%20%20%3E%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%2B%206x%20-%2014y%20%2B%2049%20%3D%200)
Step-by-step explanation:
From the graph we can see that
Diameter = 6 units
=> Radius = 3 units and centre is at (-3,7)
=> Equation is Circle with centre (-3,7) and radius of 3 units will be
![= > {(x + 3)}^{2} + {(y - 7)}^{2} = {3}^{2}](https://tex.z-dn.net/?f=%20%3D%20%20%3E%20%20%7B%28x%20%2B%203%29%7D%5E%7B2%7D%20%20%2B%20%20%7B%28y%20-%207%29%7D%5E%7B2%7D%20%20%3D%20%20%7B3%7D%5E%7B2%7D%20)
![= > ( {x}^{2} + 6x + 9) + ( {y}^{2} - 14y + 49) = 9](https://tex.z-dn.net/?f=%20%3D%20%20%3E%20%28%20%7Bx%7D%5E%7B2%7D%20%20%2B%206x%20%2B%209%29%20%2B%20%28%20%7By%7D%5E%7B2%7D%20%20-%2014y%20%2B%2049%29%20%3D%209)
![= > {x}^{2} + {y}^{2} + 6x - 14y + 49 = 0](https://tex.z-dn.net/?f=%20%3D%20%20%3E%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%2B%206x%20-%2014y%20%2B%2049%20%3D%200)
Answer:
1 plain = $0.75; 1 cheese = $0.95; 1 super = $1.25
Step-by-step explanation:
We have three conditions
(1) 5P = 3S
(2) S = C + 0.30
(3) P = C – 0.20 Substitute (3) into (1)
=====
(4) 5(C – 0.20) = 3S Substitute (2) into (4)
5(C – 0.20) = 3(C + 0.30) Remove parentheses
5C – 1.00 = 3C + 0.90 Add 1.00 to each side
5C = 3C + 1.90 Subtract 3C from each side
2C = 1.90 Divide each side by 2
C = $0.95 Substitute C into Equation (2)
=====
S = 0.95 + 0.30
S = $1.25 Substitute C into Equation (3)
=====
P = 0.95 – 0.20
P = $0.75
1 plain = $0.75; 1 cheese = $0.95; 1 super = $1.25