Answer:
just doing this for the gram
Step-by-step explanation:
say hi
Carina should've subtracted 3.40 from 5.27
Splitting up [0, 3] into
equally-spaced subintervals of length
gives the partition
![\left[0, \dfrac3n\right] \cup \left[\dfrac3n, \dfrac6n\right] \cup \left[\dfrac6n, \dfrac9n\right] \cup \cdots \cup \left[\dfrac{3(n-1)}n, 3\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%20%5Cdfrac3n%5Cright%5D%20%5Ccup%20%5Cleft%5B%5Cdfrac3n%2C%20%5Cdfrac6n%5Cright%5D%20%5Ccup%20%5Cleft%5B%5Cdfrac6n%2C%20%5Cdfrac9n%5Cright%5D%20%5Ccup%20%5Ccdots%20%5Ccup%20%5Cleft%5B%5Cdfrac%7B3%28n-1%29%7Dn%2C%203%5Cright%5D)
where the right endpoint of the
-th subinterval is given by the sequence

for
.
Then the definite integral is given by the infinite Riemann sum

Answer: 

Step-by-step explanation:
Given :

re - writing the equation , we have

we need to find the value of a and b for which -2<x < 4 , this means that the roots of the quadratic equation are -2<x < 4.
The formula for finding the quadratic equation when the roots are known is :
- sum of roots(x) + product of root = 0
sum of roots = -2 + 4 = 2
product of roots = -2 x 4 = -8
substituting into the formula , we have:
, which could be written in inequality form as

comparing with
, it means that :

