The initial height of the first body is given by:

where
g is the gravitational acceleration
t is the time it takes for the body to reach the ground
Substituting t=1 s, we find

The second body takes takes t=2 s to reach the ground, so it was located at an initial height of

The second body started its fall 1 second before the first body, therefore when the second body started its fall, the first body was located at its initial height, i.e. at 4.9 m from the ground.
This problem is about the rate of the current. It's important to know that refers to the quotient between the electric charge and the time, that's the current rate.

Where Q = 2.0×10^−4 C and t = 2.0×10^−6 s. Let's use these values to find I.

<em>As you can observe above, the division of the powers was solved by just subtracting their exponents.</em>
<em />
<h2>Therefore, the rate of the current flow is 1.0×10^2 A.</h2>
Answer:
650.65 K or 377.5°C
Explanation:
Area = A = 10 m²
Thickness of wall = L = 2.5 cm = 2.5×10⁻² m
Inner surface temperature of wall =
= 415°C = 688.15 K
Outer surface temperature of wall = 
Heat loss through the wall = 3 kW = 3×10³ W
Thermal conductivity of wall = k = 0.2 W/m K
Assumptions made here as follows
- There is not heat generation in the wall itself
- The heat conduction is one dimensional
- Heat flow follows steady state
- The material has same properties in all directions i.e., it is homogeneous.
Considering the above assumptions we use the following formula

∴ The temperature of the outer surface of the wall is 650.65 K or 377.5°C
Answer:
The number of people at game are approximately 22909
Explanation:
Given data
When one person shout 
When n number of person shout together 
The sound intensity level during one person shout is given by:

The sound intensity level during n number of person shout is given by:

Since each person generates same sound intensity and hence total number of persons can be determined as

Hence
The number of people at game are approximately 22909