When a person jumps from a tree to ground, what happens to the momentum of the person upon striking the ground is that it is transferred to earth. The momentum is not lost, it is conserved by being transferred to the ground. But it can also be lost to the impulse.
Answer:
a) a = 7.72 m / s², N = 19.9 N and b) F = 25.5 N
Explanation:
To solve this problem we will use Newton's second law, let's set a reference system with an axis parallel to the plane and gold perpendicular axis. Let's break down the weight (W)
sin52 = Wx / W
cos52 = Wy / W
Wx = W sin52
Wy = w cos 52
Let's write them equations
X axis
Wx = ma
Y Axis
N-Wy = 0
N = Wy
a) Let's calculate the acceleration
a = W sin52 / m = mg sin 52 / m
a = g sin 52
a = 9.8 sin52
a = 7.72 m / s²
The force of the ramp is normal
N = Wy = mg cos 52
N = 3.3 9.8 cos 52
N = 19.9 N
b) For the block to move at constant speed the sum of force on the axis must be zero,
F - Wx = 0
F = Wx
F = mg sin52
F = 3.3 9.8 sin 52
F = 25.5 N
Parallel to the plane and going up
Answer:
T/√8
Explanation:
From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.
For planet A, period = T and radius = 2R.
For planet B, period = T' and radius = R.
So, T²/R³ = k
So, T²/(2R)³ = T'²/R³
T'² = T²R³/(2R)³
T'² = T²/8
T' = T/√8
So, the number of hours it takes Planet B to complete one revolution around the star is T/√8
Answer:
1) a block going down a slope
2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c) W = ΔK, d) ΔU = ΔK
Explanation:
In this exercise you are asked to give an example of various types of systems
1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.
2)
a) rolling a ball uphill
In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact
W = ΔU + ΔK + ΔE
b) in this system work is transformed into internal energy
W = ΔE
c) There is no friction here, therefore the work is transformed into kinetic energy
W = ΔK
d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy
ΔU = ΔK
Answer:
To create a second harmonic the rope must vibrate at the frequency of 3 Hz
Explanation:
First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,
f₁ = v/2L
where,
v = speed of wave = 36 m/s
L = Length of rope = 12 m
f₁ = fundamental frequency
Therefore,
f₁ = (36 m/s)/2(12 m)
f₁ = 1.5 Hz
Now the frequency of nth harmonic is given in general, as:
fn = nf₁
where,
fn = frequency of nth harmonic
n = No. of Harmonic = 2
f₁ = fundamental frequency = 1.5 Hz
Therefore,
f₂ = (2)(1.5 Hz)
<u>f₂ = 3 Hz</u>