1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yKpoI14uk [10]
1 year ago
11

If 2.0×10^−4 C of charge passes a point in 2.0×10^−6 s , what is the rate of current flow?1.0×10^−10 A1.0×10^2 A4.0×10^−1 A4.0×1

0^1 A
Physics
1 answer:
Ipatiy [6.2K]1 year ago
3 0

This problem is about the rate of the current. It's important to know that refers to the quotient between the electric charge and the time, that's the current rate.

I=\frac{Q}{t}

Where Q = 2.0×10^−4 C and t = 2.0×10^−6 s. Let's use these values to find I.

\begin{gathered} I=\frac{2.0\times10^{-4}C}{2.0\times10^{-6}\sec } \\ I=1.0\times10^{-4-(-6)}A \\ I=1.0\times10^{-4+6}A \\ I=1.0\times10^2A \end{gathered}

<em>As you can observe above, the division of the powers was solved by just subtracting their exponents.</em>

<em />

<h2>Therefore, the rate of the current flow is 1.0×10^2 A.</h2>
You might be interested in
The unit used to measure electric current is the ampere (A). Now, assume that the current delivered at a wall socket reaches the
pav-90 [236]

Answer:

T = 0.017s

Explanation:

period is the time it takes a particle to make one oscillation

An electric current is periodic in nature

The current reaches 3.8A  ten times.  

So there must have been 10 cycles (10 periods) in 0.17s.   let 'T'  be the period:

T=\frac{t}{n}

t is the total time interval

n is the number of oscillations

T=\frac{0.17}{10}

10T = 0.17

T = 0.17/10 = 0.017s

8 0
3 years ago
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Alborosie

Answer:

I = 4.75 A

Explanation:

To find the current in the wire you use the following relation:

J=\frac{E}{\rho}      (1)

E: electric field E(t)=0.0004t2−0.0001t+0.0004

ρ: resistivity of the material = 2.75×10−8 ohm-meters

J: current density

The current density is also given by:

J=\frac{I}{A}        (2)

I: current

A: cross area of the wire = π(d/2)^2

d: diameter of the wire = 0.205 cm = 0.00205 m

You replace the equation (2) into the equation (1), and you solve for the current I:

\frac{I}{A}=\frac{E(t)}{\rho}\\\\I(t)=\frac{AE(t)}{\rho}

Next, you replace for all variables:

I(t)=\frac{\pi (d/2)^2E(t)}{\rho}\\\\I(t)=\frac{\pi(0.00205m/2)^2(0.0004t^2-0.0001t+0.0004)}{2.75*10^{-8}\Omega.m}\\\\I(t)=4.75A

hence, the current in the wire is 4.75A

4 0
3 years ago
g Using the absorbance vs wavelength spectrum where the 1st peak is slightly less intense than the 2nd peak, determine the wavel
Andre45 [30]

Answer:

The wavelength range is always used to know the probable material present

Explanation:

The wavelength variation from with the concentration shows the type of material in as much the Spectrometer is well initialized before running the sample. The peaks interval may have effect on band gap.  

5 0
3 years ago
An actor has a mass of 70 kg. Gravitational field strength = 9.8 N/kg. Use the following equation to calculate the weight of the
GalinKa [24]
This is a way of measuring how much gravity there is. The formula is: weight/mass = gravitational field strength.

Gravitational field strength = Weight/mass unit is N/kg

Weight = mass x gravitational field strength unit is N

On Earth the gravitational field strength is 10 N/kg. Other planets have different gravitational field strengths. The Moon has a gravitational field strength of 1.6 N/kg. You might have seen films of astronauts leaping high on the moon.

Here on Earth, if I jump I am pulled back to ground by gravity. What is my weight? My mass is 80kg and if we multiply by gravitational field strength (10N/kg) - my weight is 800N. Now if I go to the moon, my mass will be the same, 80kg. We multiply that by the moon's gravitational field strength, which is 1.6 N/ kg. That means my weight on the moon is 128N. So I have different weights on the Earth and on the Moon. That's why astronauts can jump high into the air on the moon - they're lighter up there.

Jupiter is a very large planet with strong gravitational field strength of 25 N/ kg. My body is 80kg. If I go to Jupiter my weight is going to be 25 x 80 = 2,000 N. That means I wouldn't be able to get off the ground or stand up straight! I would probably be lying down all the time there. So weight varies depending on which planet you are on. You can find out more yourself by looking up tables of weight on different planets.
8 0
2 years ago
Please helppppppppppppp
sergejj [24]

Answer:

First 8 if wrong then correct me. Second it's direction correct me if wrong.

Explanation:

8 0
3 years ago
Other questions:
  • An ore sample weighs 17.50 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in
    13·1 answer
  • (a) Given a 48.0-V battery and 24.0-Ω and 96.0-Ω resistors, find the current and power for each when connected in series. (b) Re
    13·1 answer
  • A train starts from rest and travels for 5.0 s with a uniform acceleration of 1.5 m/s2. What is the final velocity of the train?
    13·2 answers
  • A mass M is attached to a spring with spring constant k. When this system is set in motion with amplitude A, it has a period T.
    12·1 answer
  • What are the prevailing winds from the west toward the east called?
    13·1 answer
  • An owl weighing 40N is sitting in a tree waiting to dive down to catch a mouse. If the owl's potential energy is 800 J with resp
    5·1 answer
  • How fast, in meters per second, does an observer need to approach a stationary sound source in order to observe a 1.6 % increase
    9·1 answer
  • When an electron enters a region of uniform magnetic field (B=0.19T), with its
    12·1 answer
  • Describe at least one technological application of radioactive decay that can benefit human health.
    7·2 answers
  • To reduce auto emissions in the United States, modifications to automobile engines have been required since the 1960s.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!