Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.
The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:
<em>70 km per second per megaparsec</em>.
We'll also need to know that 1 parsec = about 3.262 light years.
So the speed of your receding galaxy is
(Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =
(150 million) x (1 / 3,262,000) x (70 km/sec) =
<em>3,219 km/sec </em>in the direction away from us (rounded)
science hasnt figured it out yet
Answer:
e3f3ewfeewfewgwgewggegegeggegeggege
Explanation:
Answer:
a) v2=4147.72 m/s
b) stotal=5.53x10^6 m
Explanation:
a) the length from the center of the earth is equal to:
L1=1x10^6+((6.37/2)x10^6)=4.18x10^6 m
the velocity is 5.14 km/s=5.14x10^3 m/s
the farthest distance is equal to:
L2=2x10^6+((6.37/2)x10^6)=5.18x10^6 m
As the angular momentum is conserved, we have to:
I1=I2
m*L1*v1=m*L2*V2, where m is the mass of satelite
clearing v2:
v2=(L1*V1)/L2=(4.18x10^6*5.14x10^3)/5.18x10^6=4147.72 m/s
b) Using the Newton 3rd law:
vf^2=vi^2+2as
where:
a=g=9.8 m/s^2
vf=0
vi=5.14 km/s
s=?
Clearing s:
s=(vf^2-vi^2)/(2g)=((0-(5.14x10^3)^2)/(2*9.8)=1.35x10^6 m
the total distance is equal to:
stotal=s+L1=1.35x10^6+4.18x10^6=5.53x10^6 m
The work done on the backpack by the student applies 80 N of force to lift the backpack 1.5 m is 120J.
<h3>How to calculate work done?</h3>
Work done is a measure of energy expended in moving an object; most commonly, force times distance.
It is said that no work is done if the object does not move, hence, the work done on an object can be calculated as follows:
Work done = Force × Distance
According to this question, a student carries a very heavy backpack and to lift the backpack off the ground, the student must apply 80 N of force to lift the backpack 1.5 m.
Work done = 80N × 1.5m
Work done = 120J
Therefore, the work done on the backpack by the student applies 80 N of force to lift the backpack 1.5 m is 120J.
Learn more about work done at: brainly.com/question/28172139
#SPJ1