The number of protons in an uncharged atom equals the number of electrons.
The balanced chemical reaction is written as:
<span>Cu +2AgNO3 → Cu(NO3)2 + 2Ag
</span>
We are given the amount of silver nitrate to be used for the reaction. This value will be the starting point of our calculations. It is as follows:
4.00 g AgNO3 ( 1 mol / 169.87 g ) ( 1 mol Cu / 2 mol AgNO3 ) ( 63.456 g / 1 mol ) = 0.747 g Cu
The hypothesis is that salt water freezes faster than fresh water.
The dependent variable is time taken for ice to appear.
The independent variable is presence or absence of salt
The constants are the amount of water in each tray, freezing conditions and length of time of exposure to freezing condition.
The control group is the tray to which salt was not added
The experimental group is the tray to which salt was added
The presence of solutes in a solution causes the freezing point depression.
A solution is made up of a solute and a solvent. In the presence of a solute, the freezing point of a pure solvent is decreased. This is because freezing point is a colligative property.
Colligative properties depend on the amount of solute present.
Hence, the pure water freezes faster (ice begin to appear earlier) than the salt water.
The hypothesis put forward in this experiment was found to be invalid by the experiment.
For more about colligative properties, see
brainly.com/question/10323760
Electronegativity is related to covalent bonding because when two atoms have the same electronegativity bond, they will form a pure covalent bond.
Answer:
Half-reactions:
Cr³⁺ + 1e⁻ → Cr²⁺; Zn → Zn²⁺ + 2e⁻
Net ionic equation:
2Cr³⁺ + Zn → 2Cr²⁺ + Zn²⁺
Explanation:
The Cr³⁺ is reduced to Cr²⁺:
<h3>
Cr³⁺ + 1e⁻ → Cr²⁺ -Half-reaction 1-</h3>
Zn is oxidized to Zn²⁺:
<h3>
Zn → Zn²⁺ + 2e⁻ -Half-reaction 2-</h3>
Twice the reduction of Cr:
2Cr³⁺ + 2e⁻ → 2Cr²⁺
Now this reaction + Oxidation of Zn:
2Cr³⁺ + 2e⁻ + Zn → 2Cr²⁺ + Zn²⁺ + 2e⁻
<h3>2Cr³⁺ + Zn → 2Cr²⁺ + Zn²⁺ - Net ionic equation</h3>