You must burn 1.17 g C to obtain 2.21 L CO2 at
STP.
The balanced chemical equation is
C+02+ CO2.
Step 1. Convert litres of CO, to moles of CO2.
STP is 0 °C and 1 bar. At STP the volume of 1 mol
of an ideal gas is 22.71 L.
Moles of CO2= 2.21 L CO2 × (1 mol CO2/22.71 L
CO2) = 0.097 31 mol CO2
Step 2. Use the molar ratio of C:CO2 to convert
moles of CO to moles of C
Moles of C= 0.097 31mol CO2 × (1 mol C/1 mol
CO2) = 0.097 31mol C
Step 3. Use the molar mass of C to calculate the
mass of C
Mass of C= 0.097 31mol C × (12.01 g C/1 mol C) =
1.17 g C
It looks as if you are using the old (pre-1982)
definition of STP. That definition gives a value of
1.18 g C.
Explanation:
Metals are the species which readily lose electrons in order to attain stability. This electron lost by the atom is actually present in its outermost shell which is also known as valence shell.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period.
But when we move down a group then there occurs an increase in atomic size of the atoms due to addition of number of electrons in the atoms. Hence, ionization energy decreases along a group.
Thus, we can conclude that metals have low ionization energies and readily share their valence or outer electrons with each other to form an electron sea. These electrons are delocalized or shared among all the atoms that are bonded together and can therefore move freely throughout the metal structure.
Answer:

Explanation:
Hello!
In this case, since the net ionic equation of a chemical reaction shows up the ionic species that result from the simplification of the spectator ions, which are those at both reactants and products sides, we take into account that aqueous species ionize into ions whereas liquid, solid and gas species remain unionized. In such a way, for the reaction of cesium phosphate and silver nitrate we can write the complete molecular equation:

Whereas the three aqueous salts are ionized in order to write the following complete ionic equation:

In such a way, since the cesium and nitrate ions are the spectator ions because of the aforementioned, the net ionic equation turns out:

Best regards!
Answer:
False
Explanation:
The urine is produced in the kidneys, each one of the kidneys is connected to a ureter. The ureter is a tube that propels the excreted urine to the urinary bladder. The urinary bladder is a deposit for the urine, here is collected and stored before disposal. After the urinary bladder, the urine goes through the urethra, which is a tube, to exit the body.
Answer:
The empirical formula is CH2O, and the molecular formula is some multiple of this
Explanation:
In 100 g of the unknown, there are 40.0⋅g12.011⋅g⋅mol−1 C; 6.7⋅g1.00794⋅g⋅mol−1 H; and 53.5⋅g16.00⋅g⋅mol−1 O.
We divide thru to get, C:H:O = 3.33:6.65:3.34. When we divide each elemental ratio by the LOWEST number, we get an empirical formula of CH2O, i.e. near enough to WHOLE numbers. Now the molecular formula is always a multiple of the empirical formula; i.e. (EF)n=MF.So 60.0⋅g⋅mol−1=n×(12.011+2×1.00794+16.00)g⋅mol−1.Clearly n=2, and the molecular formula is 2×(CH2O) = CxHyOz.