Answer:
51.85m/s
Explanation:
Given parameters:
Mass of ball = 0.0459kg
Force = 2380N
Time taken = 0.001s
Unknown:
Speed of the ball afterwards = ?
Solution:
To solve this problem, we use Newton's second law of motion:
F = m x
F is the force
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
2380 = 0.0459 x
0.0459v = 2.38
v = 51.85m/s
Deer depend on plants to survive because they are herbivores. Herbivores are animals that only eats plants and fruits in order to survive. Deer's meal includes grass and evergreen plants. If grass is unavailable, they eat whatever food like fallen leaves, twigs, bushes and other woody plants.
It d bro it’s d bro it’s d
Assume the motion when you are in the car or in the school bus to go to the school.
To describe the motion the first thing you need is a point of reference. Assume this is your house.
This should be a description:
- When you are sitting and the car has not started to move you are at rest.
- The car starts moving from rest, gaining speed, accelerating. You start to move away from your house, with a positive velocity (from you house to your school) and positive acceleration (velocity increases).
- The car reaches a limit speed of 40mph, and then moves at constant speed. The motion is uniform, the velocity is constant, positive, since you move in the same direction), and the acceleration is zero.
- When the car approaches the school, the driver starts to slow down. Then, you speed is lower but yet the velocity is positive, as you are going in the same direction. The acceleration is negative because it is in the opposite direction of the motion.
- When the car stops, you are again at rest: zero velocity and zero acceleration.
- In all the path your velocity was positive, constant at times (zero acceleration) and variable at others (accelerating or decelerating).
- When you comeback home, then you can start to compute negative velocities, as you will be decreasing the distance from your point of reference (your house).
Answer:
Explanation:
radius of aorta = 1.5 cm
cross sectional area = π r²
= 3.14 x 1.5²
= 7.065 cm²
volume of blood flowing out per second out of heart
= a x v , a is cross sectional area , v is velocity of flow
= 7.065 x 11.2
= 79.128 cm³
heart beat per second = 67 / 60
= 1.116666
If V be the volume of heart
1.116666 V = 79.128
V = 70.86 cm³.