Um tubo de raios-X é um tubo de vácuo que converte a energia elétrica em raios-X. A disponibilidade dessa fonte controlável de raios-X criou o campo da radiografia, a imagem de objetos parcialmente opacos com radiação penetrante. Em contraste com outras fontes de radiação ionizante, os raios X são produzidos apenas enquanto o tubo de raios X estiver energizado. Os tubos de raios-X também são utilizados em scanners de tomografia computadorizada, scanners de bagagem de aeroportos, cristalografia de raios-X, análise de materiais e estrutura e para inspeção industrial.
Answer:
The acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Explanation:
The centripetal acceleration acts on a body when it is performing a circular motion.
Here, a point on the bicycle is performing circular motion as the rotation of the wheel produces a circular motion.
The centripetal acceleration of a point moving with a velocity
and at a distance of
from the axis of rotation is given as:

Here, 
∴ 
Therefore, the acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Answer:
b. 0.6m/s, 0.7m/s, 0.61m/s, 0.62m/s
Explanation:
Precision of a measurement is the closeness of the experimental values to one another. Hence, experimental measurements are said to be precise if they are close to each other irrespective of how close they are to the accepted value. Precision can be determined by finding the range of each experimental value. The measurement with the LOWEST RANGE represents the MOST PRECISE.
Note: Range is the highest value - lowest value
Set A: 1.5 - 0.8 = 0.7
Set B: 0.7 - 0.6 = 0.1
Set C: 2.4 - 2.0 = 0.4
Set D: 3.1 - 2.9 = 0.2
Set B has the lowest range (0.1), hence, represent the most precise value.
Hi there! :)
Reference the diagram below for clarification.
1.
We must begin by knowing the following rules for resistors in series and parallel.
In series:

In parallel:

We can begin solving for the equivalent resistance of the two resistors in parallel using the parallel rules.

Now that we have reduced the parallel resistors to a 'single' resistor, we can add their equivalent resistance with the other resistor in parallel (15 Ohm) using series rules:

2.
We can use Ohm's law to solve for the current in the circuit.

3.
For resistors in series, both resistors receive the SAME current.
Therefore, the 15Ω resistor receives 6A, and the parallel COMBO (not each individual resistor, but the 5Ω equivalent when combined) receives 6A.
In this instance, since both of the resistors in parallel are equal, the current is SPLIT EQUALLY between the two. (Current in parallel ADDS UP). Therefore, an even split between 2 resistors of 6 A is <u>3A for each 10Ω resistor</u>.
4.
Since the 15.0 Ω resistor receives 6A, we can use Ohm's Law to solve for voltage.
