Answer:

Step-by-step explanation:


We use binomial expansion for 
This can be rewritten as
![[x(1+\dfrac{h}{x})]^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Bx%281%2B%5Cdfrac%7Bh%7D%7Bx%7D%29%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)

From the expansion

Setting
and
,


Multiplying by
,



The limit of this as
is
(since all the other terms involve
and vanish to 0.)
Therefore 
Step-by-step explanation:
Given,





Therefore 
1 yard = 36 inches
So,
39 inches times the number of yards
39inches times (x)yards
39(x)