<u>Given</u><u> </u><u>:</u>
<u>To</u><u> </u><u>Find</u><u> </u><u>:</u>
<u>Answer</u><u> </u><u>:</u>
- x + y = 4 ....[Equation (i)]
- x + y = 1......[Equation (ii)]
<u>Adding</u><u> </u><u>eqⁿ (ii) </u><u>and</u><u> eqⁿ (i) we get :</u>
→ x + y + x - y = 4 + 1
→ 2x = 5
→ x = 5/2
→ x = 2.5
<u>Now</u><u>,</u><u> </u><u>put</u><u> </u><u>the</u><u> </u><u>value </u><u>of</u><u> </u><u>x</u><u> </u><u>=</u><u> </u><u>5</u><u>/</u><u>2</u><u> </u><u>in</u><u> </u><u>eqⁿ</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>we</u><u> </u><u>get</u><u> </u><u>:</u>
→ x + y = 4
→ 5/2 + y = 4
→ y = 4 - 5/2
→ y = 1.5
Answer:
48 °
Step-by-step explanation:
The following data were obtained from the question:
Adjacent = 12 cm
Hypothenus = 18 cm
Angle R =?
We can obtain angle R by using cosine ratio. This can be obtained as follow:
Cos R = Adjacent / Hypothenus
Cos R = 12 / 18
Cos R = 0.6667
Take the inverse of Cos
R = Cos¯¹ 0.6667
R = 48 °
Thus, <QRP = 48 °
Answer:
y =52
Step-by-step explanation:
We know that the angles 4x and 5x make a straight line
4x+5x = 180
9x = 180
Divide by 9
9x/9 = 180/9
x = 20
The three angles of a triangle make 180
y + 48 +4x = 180
y + 48+4(20) =180
y + 48 +80 = 180
Combine like terms
y +128 = 180
Subtract 128 from each side
y + 128-128 = 180-128
y =52