PART A
The given equation is
![h(t) = - 16 {t}^{2} + 40t + 4](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-%2016%20%7Bt%7D%5E%7B2%7D%20%2B%2040t%20%2B%204)
In order to find the maximum height, we write the function in the vertex form.
We factor -16 out of the first two terms to get,
![h(t) = - 16 ({t}^{2} - \frac{5}{2} t) + 4](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-%2016%20%28%7Bt%7D%5E%7B2%7D%20-%20%5Cfrac%7B5%7D%7B2%7D%20t%29%20%2B%204)
We add and subtract
![- 16(- \frac{5}{4} )^{2}](https://tex.z-dn.net/?f=%20-%2016%28-%20%5Cfrac%7B5%7D%7B4%7D%20%29%5E%7B2%7D%20)
to get,
![h(t) = - 16 ({t}^{2} - \frac{5}{2} t) + - 16( - \frac{5}{4})^{2} - -16( - \frac{5}{4})^{2} + 4](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-%2016%20%28%7Bt%7D%5E%7B2%7D%20-%20%5Cfrac%7B5%7D%7B2%7D%20t%29%20%2B%20-%2016%28%20-%20%5Cfrac%7B5%7D%7B4%7D%29%5E%7B2%7D%20-%20-16%28%20-%20%5Cfrac%7B5%7D%7B4%7D%29%5E%7B2%7D%20%2B%204)
We again factor -16 out of the first two terms to get,
![h(t) = - 16 ({t}^{2} - \frac{5}{2} t + ( - \frac{5}{4})^{2} ) - -16( - \frac{5}{4})^{2} + 4](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-%2016%20%28%7Bt%7D%5E%7B2%7D%20-%20%5Cfrac%7B5%7D%7B2%7D%20t%20%2B%20%28%20-%20%5Cfrac%7B5%7D%7B4%7D%29%5E%7B2%7D%20%29%20-%20-16%28%20-%20%5Cfrac%7B5%7D%7B4%7D%29%5E%7B2%7D%20%2B%204)
This implies that,
![h(t) = - 16 ({t}^{2} - \frac{5}{2} t + ( - \frac{5}{4}) ^{2} ) + 16( \frac{25}{16}) + 4](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-%2016%20%28%7Bt%7D%5E%7B2%7D%20-%20%5Cfrac%7B5%7D%7B2%7D%20t%20%2B%20%28%20-%20%5Cfrac%7B5%7D%7B4%7D%29%20%5E%7B2%7D%20%29%20%2B%2016%28%20%5Cfrac%7B25%7D%7B16%7D%29%20%2B%204)
The quadratic trinomial above is a perfect square.
![h(t) = - 16 ( t- \frac{5}{4}) ^{2} +25+ 4](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-%2016%20%28%20t-%20%5Cfrac%7B5%7D%7B4%7D%29%20%5E%7B2%7D%20%2B25%2B%204)
This finally simplifies to,
![h(t) = - 16 ( t- \frac{5}{4}) ^{2} +29](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-%2016%20%28%20t-%20%5Cfrac%7B5%7D%7B4%7D%29%20%5E%7B2%7D%20%2B29)
The vertex of this function is
![V( \frac{5}{4} ,29)](https://tex.z-dn.net/?f=V%28%20%5Cfrac%7B5%7D%7B4%7D%20%2C29%29)
The y-value of the vertex is the maximum value.
Therefore the maximum value is,
![29](https://tex.z-dn.net/?f=29)
PART B
When the ball hits the ground,
![h(t) = 0](https://tex.z-dn.net/?f=h%28t%29%20%3D%200)
This implies that,
![- 16 ( t- \frac{5}{4}) ^{2} +29 = 0](https://tex.z-dn.net/?f=-%2016%20%28%20t-%20%5Cfrac%7B5%7D%7B4%7D%29%20%5E%7B2%7D%20%2B29%20%3D%200)
We add -29 to both sides to get,
![- 16 ( t- \frac{5}{4}) ^{2} = - 29](https://tex.z-dn.net/?f=-%2016%20%28%20t-%20%5Cfrac%7B5%7D%7B4%7D%29%20%5E%7B2%7D%20%3D%20-%2029)
This implies that,
![( t- \frac{5}{4}) ^{2} = \frac{29}{16}](https://tex.z-dn.net/?f=%28%20t-%20%5Cfrac%7B5%7D%7B4%7D%29%20%5E%7B2%7D%20%3D%20%5Cfrac%7B29%7D%7B16%7D%20)
![t- \frac{5}{4} = \pm \sqrt{ \frac{29}{16} }](https://tex.z-dn.net/?f=%20t-%20%5Cfrac%7B5%7D%7B4%7D%20%3D%20%5Cpm%20%5Csqrt%7B%20%5Cfrac%7B29%7D%7B16%7D%20%7D%20)
![t = \frac{5}{4} \pm \frac{ \sqrt{29} }{4}](https://tex.z-dn.net/?f=%20t%20%3D%20%5Cfrac%7B5%7D%7B4%7D%20%5Cpm%20%5Cfrac%7B%20%5Csqrt%7B29%7D%20%7D%7B4%7D%20)
![t = \frac{ 5 + \sqrt{29} }{4} = 2.60](https://tex.z-dn.net/?f=%20t%20%3D%20%5Cfrac%7B%205%20%2B%20%5Csqrt%7B29%7D%20%7D%7B4%7D%20%3D%202.60)
or
![t = \frac{ 5 - \sqrt{29} }{4} = - 0.10](https://tex.z-dn.net/?f=%20t%20%3D%20%5Cfrac%7B%205%20-%20%5Csqrt%7B29%7D%20%7D%7B4%7D%20%3D%20-%200.10)
Since time cannot be negative, we discard the negative value and pick,