Newton's law of universal gravitation states that a particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Using this law the answer will be A. attract each other.
The equation : y=3x-5
<h3>Further explanation
</h3>
Straight-line equations are mathematical equations that are described in the plane of cartesian coordinates
General formula
y-y1 = m(x-x1)
or
y = mx + c
Where
m = straight-line gradient which is the slope of the line
x1, y1 = the Cartesian coordinate that is crossed by the line
c = constant
The formula for a gradient (m) between 2 points in a line
m = Δy / Δx


<h3>
Answer:</h3>
0.0253 mol H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 0.456 g H₂O (water)
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.025305 mol H₂O ≈ 0.0253 mol H₂O
Answer:
0.252 milimoles
Explanation:
To convert mass of a substance to moles it is necessary to use the molar mass of the substance.
The formula of morphine is C₁₇H₁₉NO₃, thus, its molar mass is:
C: 17*12.01g/mol = 204.17g/mol
H: 19*1.01g/mol = 19.19g/mol
N: 1*14g/mol = 14g/mol
O: 3*16g/mol = 48g/mol.
204.17 + 19.19 + 14 + 16 = <em>285.36g/mol</em>
Thus, moles of 71.891 mg = 0.071891g:
0.071891g × (1mol / 285.36g) = 2.5193x10⁻⁴ moles
As 1 mole = 1000 milimoles:
2.5193x10⁻⁴ moles = <em>0.252 milimoles</em>