Answer:we know that all 3 sides are equal
so if side =a
then perimeter =3a
therefore
3a=6n-15
a=6n-15/3
a=2n-5
The expression coud be re written:
12x²y/2xy + 6xy/2xy + 4x²/2xy . Simplify numerator & denominator whenever it is possible:
6x-3+2x/y
Statements
2. right triangle
3. PQ = OP
5. ∆ONP = ∆PQO
Reasons
1. Given
4. Given
5. SAS
<em><u>hope </u></em><em><u>this</u></em><em><u> answer</u></em><em><u> helps</u></em><em><u> you</u></em><em><u> dear</u></em><em><u> </u></em><em><u>take</u></em><em><u> care</u></em><em><u> </u></em><em><u>and </u></em><em><u>may</u></em><em><u> u</u></em><em><u> have</u></em><em><u> a</u></em><em><u> great</u></em><em><u> day</u></em><em><u> ahead</u></em><em><u>!</u></em>
Given:
The expressions are:



To find:
The value of given expression by using integer tiles.
Solution:
We have,

Here, both number are positive. When we add 6 and 3 positive integer tiles, we get 9 positive integer tiles as shown in the below figure. So,

Similarly,

Here, 6 is positive and -4 is negative. It means we have 6 positive integer tiles and 4 negative integer tiles.
When we cancel the positive and negative integer tiles, we get 2 positive integer tiles as shown in the below figure. So,


Here, 6 is positive and -6 is negative. It means we have 6 positive integer tiles and 6 negative integer tiles.
When we cancel the positive and negative integer tiles, we get 0 integer tiles as shown in the below figure. So,

Therefore,
.
Answer:
cos(O) = 39 / 89
Step-by-step explanation:
Given:
ΔOPQ, where
∠Q=90°
PO = 89
OQ = 39
QP = 80
cosine of ∠O?
cos(O) = Adjacent / Hypotenuse
cos(O) = 39 / 89