Answer:
Yes! Thinking about it graphically a position vs time graph models meters per second in most cases, making every point on the line have the units m/s. If we want the find the slope we are finding the change between each point and those units would change to m/s/s or m/s^2 giving us the same units for acceleration. Simply put, slope of a velocity graph gives us acceleration.
Explanation:
Answer:
0.7000cm
Explanation:
bbbgffffffjj office yhhjujhhhhhhhhhhhjjnjhhhhbhhh
The answer is D. As the ambulance gets closer, the sound waves are compressed relative to the person; so the frequency increases.
Answer:
2.45 J
Explanation:
The following data were obtained from the question:
Mass (m) = 0.5 kg
Height (h) = 1 m
Kinetic energy (KE) =?
Next, we shall determine the velocity of the rock after it has fallen half way. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 1/2 = 0.5 m
Final velocity (v) =?
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 0.5)
v² = 9.8
Take the square root of both side
v = √9.8
v = 3.13 m/s
Finally, we shall determine the kinetic energy of the rock after it has fallen half way. This can be obtained as follow:
Mass (m) = 0.5 kg
Velocity (v) = 3.13 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.5 × 3.13²
KE = 0.25 × 9.8
KE = 2.45 J
Therefore, the kinetic energy of the rock after it has fallen half way is 2.45 J
Answer:
The wall is 680 meter away from the person.
Explanation:
Given data
Speed of sound = 340
Given that Persons said hello toward the opposite side she has an echo hello 4 seconds later means it takes 2 seconds for the sound to reach the wall & again 2 seconds to reach the persons ear.
Therefore the distance between the person & wall is
D = speed × Time
D = 340 × 2
D = 680 meter
Therefore the wall is 680 meter away from the person.