<em>12,25 km/h</em>
<em>≈ 3,4 m/s </em>
<em>v = d/t</em>
<em>= 12250m/h</em>
<em>= 12,25km/h</em>
<em>or</em>
<em>v = d/t</em>
<em>= 12250m/h</em>
<em>1h = 60m×60s = 3600s</em>
<em>= 12250m/3600s</em>
<em>≈ 3,4 m/s </em>
Answer:
The magnitude of the resultant decreases from A+B to A-B
Explanation:
The magnitude of the resultant of two vectors is given by

where
A is the magnitude of the first vector
B is the magnitude of the second vector
is the angle between the directions of the two vectors
In the formula, A and B are constant, so the behaviour depends only on the function
. The value of
are:
- 1 (maximum) when the angle is 0, so the magnitude of the resultant in this case is

- then it decreases, until it becomes 0 when the angle is 90 degrees, where the magnitude of the resultant is

- then it becomes negative, and continues to decrease, until it reaches a value of -1 when the angle is 180 degrees, and the magnitude of the resultant is

Answer:
0.4
Explanation:
Because 3m/s is the initial velocity(u) and 5m/s is the final velocity(v) and time is 5 sec.
So, acceleration = v-u ÷ t
I'm confused
♥ C) 94%
♥ If the work put into a lever is 930 joules and the work accomplished is 870 joules, the efficiency of the lever is 94%.
♥ <span>870/930=93.5
</span>♥ And rounded you get 94.
<span>The relationship between wavelength, frequency and energy of Electromagnetic Radiation is given by
E = hf = hc/lamba -------(1)
So from (1) there's a linear relationship between E and f. The higher the frequency, f, the higher the energy E.
Also from (1) it is obvious that the lower the wavelength, lambda, the higher the energy, E.
This means the answer is D.</span>