Answer:
0.955286 j
Explanation:
A 500.0 kg module is attached to a 440.0 kg shuttle craft, which moves at 1050. m/s relative to the stationary main spaceship. Then a small explosion sends the module backward with speed 100.0 m/s relative to the new speed of the shuttle craft. As measured by someone on the main spaceship, by what fraction did the kinetic energy of the module and shuttle craft, Ki, increase because of the explosion?
M=500 kg, m=440 kg
V=1000 m/s, v = 100 m/s
Let relative speed =Vs
Momentum rule says
(M+m)V=mVs+M(Vs-v)
940(1000)=500(Vs-100)+440Vs
940000=500Vs-50000+440Vs
940Vs=940000+50000
940Vs=990000
Vs= 990000/940=1053.19 m/s
So, the module speed = Vs-v=1053.19-100=953.19 m/s
Fractional increase in KE is given by;
Total KE after explosion / He before explosion
=500(953.19)2+ 400(1053.19)2/ 940(1000)2= 0.955286
Oil flows upward in the wick of a lantern because of the liquid property called <span>Capillarity c:</span>
Answer:
the green truck
Explanation:
the truck has 6 boxes which weighs more than 4, 3, or 2
Answer:
I₂ = 0.04 W / m²
Explanation:
Sound intensity is the power emitted between the unit area
I = W / A
W = I A
sound is a wave that travels in space whereby its energy is distributed on the surface of a sphere
A = 4π r²
we substitute
W = I (4π r²)
the emission power is constant, so the intensity at two different points is
W = I₁ 4π r₁² = I₂ 4π r₂²
so the equation is
I₁ r₁² = I₂ r₂²
In this case the units are not shown in the exercise, suppose that all units are in the SI system
I₂ =
let's calculate
I₂ = 4
I₂ = 0.04 W / m²