1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
2 years ago
6

A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to

gravity is g = 9.8 m/s2.
Physics
1 answer:
sineoko [7]2 years ago
6 0

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

You might be interested in
PLZ HELP
Goshia [24]
Space debris that enters earths atmosphere
5 0
3 years ago
What is the work of a 520n student walking a distance of 3 m
Wewaii [24]

Answer:

W=1560 Joules

Explanation:

Use W=fd

so, W=520N(3m)= 1560J

8 0
3 years ago
An green hoop with mass mh = 2.8 kg and radius rh = 0.17 m hangs from a string that goes over a blue solid disk pulley with mass
vladimir2022 [97]
The mass of the hoop is the only force which is computed by:F net = 2.8kg*9.81m/s^2 = 27.468 N 
the slow masses that must be quicker are the pulley, ring, and the rolling sphere. 
The mass correspondent of M the pulley is computed by torque τ = F*R = I*α = I*a/R F = M*a = I*a/R^2 --> M = I/R^2 = 21/2*m*R^2/R^2 = 1/2*m 
The mass equal of the rolling sphere is computed by: the sphere revolves around the contact point with the table. So using the proposition of parallel axes, the moment of inertia of the sphere is I = 2/5*mR^2 for spin about the midpoint of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. I = 7/5*mR^2 M = 7/5*m 
the acceleration is then a = F/m = 27.468/(2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
6 0
3 years ago
What are the three ways acceleration can occur
Mariana [72]

Answer:

Change in velocity, change in direction, change in both velocity and direction

Explanation:

5 0
3 years ago
A graph shows how the temperature of a substance changes as energy is added steadily over time.
OlgaM077 [116]

Answer:

A flat, horizontal line  

Explanation:

A flat, horizontal line indicates a phase change.

The temperature does not increase because the added heat goes into converting one phase into another.

A is wrong. A downward-sloping line indicates that the temperature is decreasing with time.

C is wrong. An upward-sloping line indicates that the temperature is increasing with time.

8 0
3 years ago
Read 2 more answers
Other questions:
  • 17. What is movig from the sound source to the
    5·2 answers
  • Select the correct boxes.
    10·1 answer
  • ann drove to the store 10 km north of her house and then drove to the library which is 5 km south of the store
    14·1 answer
  • Most psychologists would fall under what category of care?
    12·2 answers
  • Which piece of equipment would give the MOST accurate measurement of 45 mL of a liquid? A) A 100 mL graduated cylinder B) A 50 m
    14·2 answers
  • A box-shaped metal can has dimensions 5 in. by 19 in. by 4 in. high. All of the air inside the can is removed with a vacuum pump
    10·1 answer
  • An object of mass 20kg is released from a height of 10 meters above the ground level. The kinetic energy of the the object just
    15·1 answer
  • Bài 1. Một vật được đặt trên một mặt phẳng nghiêng hợp với mặt phẳng nằm ngang một góc  = 300.
    8·1 answer
  • How did Millikan's oil drop experiment lead to quantum nature of electric charge?​
    10·1 answer
  • Your friend has slipped and fallen. To help her up, you pull with a force F, as the drawing shows. The vertical component of thi
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!