1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
6

Which describes a high frequency wave?

Physics
1 answer:
pav-90 [236]3 years ago
5 0
<span>B.
many wavelengths pass a given point in one second
</span>
You might be interested in
A uniform rod of mass 3.30×10−2 kg and length 0.450 m rotates in a horizontal plane about a fixed axis through its center and pe
Alex73 [517]

(a) 2.75 rev/min

The moment of inertia of the rod rotating about its center is:

I_R=\frac{1}{12}ML^2

where

M=3.30\cdot 10^{-2} kg is its mass

L = 0.450 m is its length

Substituting,

I_R=\frac{1}{12}(3.30\cdot 10^{-2})(0.450)^2=5.57\cdot 10^{-4} kg m^2

The moment of inertia of the two rings at the beginning is

I_r = 2mr^2

where

m = 0.200 kg is the mass of each ring

r=5.20\cdot 10^{-2} m is their distance from the center of the rod

Substituting,

I_r=2(0.200)(5.20\cdot 10^{-2})^2=1.08\cdot 10^{-3} kg m^2

So the total moment of inertia at the beginning is

I_1=I_R+I_r = 5.57\cdot 10^{-4}+1.08\cdot 10^{-3}=1.64\cdot 10^{-3}kg m^2

The initial angular velocity of the system is

\omega_1 = 35.0 rev/min

The angular momentum must be conserved, so we can write:

L=I_1 \omega_1 = I_2 \omega_2 (1)

where I_2 is the moment of inertia when the rings reach the end of the rod; in this case, the distance of the ring from the center is

r=\frac{0.450 m}{2}=0.225 m

so the moment of inertia of the rings is

I_r=2(0.200)(0.225)^2=0.0203 kg m^2

and the total moment of inertia is

I_2 = I_R + I_r =5.57\cdot 10^{-4} + 0.0203 = 0.0209 kg m^2

Substituting into (1), we find the final angular speed:

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(1.64\cdot 10^{-3})(35.0)}{0.0209}=2.75 rev/min

(b) 103.0 rev/min

When the rings leave the rod, the total moment of inertia is just equal to the moment of inertia of the rod, so:

I_2 = I_R = 5.57\cdot 10^{-4}kg m^2

So using again equation of conservation of the angular momentum:

L=I_1 \omega_1 = I_2 \omega_2

We find the new final angular speed:

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(1.64\cdot 10^{-3})(35.0)}{5.57\cdot 10^{-4}}=103.0 rev/min

7 0
3 years ago
Instantaneous speed is measured
VMariaS [17]

Answer:

C. At a particular instant

Explanation:

Speed is the defined as the ratio between the distance covered by an object and the time taken:

v=\frac{d}{t}

where d is the distance and t the time.

However, there are two possible measurements of speed:

- Average speed: this is the speed measured over a non-zero time interval (for example: a car moving 100 metres in 5 seconds; its average speed is

v=\frac{100 m}{5 s}=20 m/s

- Instantaneous speed: this is the speed of an object measured at a particular instant in time, so for a time interval that tends to zero. So, in the previous example, the average speed is 20 m/s but the instantaneous speed of the car at various instants of time can be different from that value.

7 0
3 years ago
Which statement explains what happens to older crust during seafloor spreading?
ikadub [295]

Answer:

the last one, It moves away from a mid-ocean ridge.

6 0
3 years ago
Energy Conservation With Conservative Forces: If a spring-operated gun can shoot a pellet to a maximum height of 100 m on Earth,
crimeas [40]

Answer:

h' = 603.08 m

Explanation:

First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:

2gh = Vf² - Vi²

where,

g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)

h = height of pellet = 100 m

Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)

Vi = Initial Velocity of Pellet = ?

Therefore,

(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²

Vi = √(1960 m²/s²)

Vi = 44.27 m/s

Now, we use this equation at the surface of moon with same initial velocity:

2g'h' = Vf² - Vi²

where,

g' = acceleration due to gravity on the surface of moon = 1.625 m/s²

h' = maximum height gained by pellet on moon = ?

Therefore,

2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²

h' = (1960 m²/s²)/(3.25 m/s²)

<u>h' = 603.08 m</u>

4 0
3 years ago
A girl lifts a 160-N load to a height of 1 m in 0.5 s. How much power is used to lift the load?
12345 [234]
First, find the work done. W = f*d, so 160 N * 1 m = 160 J. Then divide the work by the time to get the power. P = W/t. P = 160 J / 0.5 s = 320 W.
The answer is 320 W. Hope this helps, and have a great day! :)

8 0
3 years ago
Other questions:
  • Why do all the electrons in an iron atom not settle together into the lowest energy state? because.?
    6·1 answer
  • What is the momentum of a 52 kg carton that slides at 5.0m/s across an icy surface?
    8·1 answer
  • . The inner and outer surfaces of a 4-m × 7-m brick wall of thickness 30 cm and thermal conductivity 0.69 W/m-K are maintained a
    5·1 answer
  • A batter hits a 0.140-kg baseball that was approaching him at 40.0 m/s and, as a result, the ball leaves the bat at 30.0 m/s in
    7·1 answer
  • The speed of sound in air is around 345 m/s. A tuning fork vibrates at 610 Hz above the open end of the sound resonance tube. Wh
    6·1 answer
  • what magnetic field is needed to exert a force of 0.4N on a 0.1m long conductor if it carries a current of 2A perpendicular to t
    5·1 answer
  • What are three ways a driver can cause a car to accelerate?
    14·2 answers
  • The aorta carries blood away from the heart at a speed of about 42 cm/s and has a diameter of approximately 1.1 cm. The aorta br
    8·1 answer
  • What type of device is a coal-fired power plant?
    7·2 answers
  • if force accelerate mass with acceleration and the same force accelerate the mass which is quarter of the first one by​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!