Answer:
Vibrations of the eardrum are in turn translated into oscillations of tiny bones (ossicles) found within the middle ear. The Hammer, Anvil, and Stirrup magnify the oscillations and relay this information to the chamber of the inner ear.
A tachometer measures, for example it measures the MPH(Miles Per Hour) in a car. So like it measures your speed, so you could be going 100 MPH.
No force contributes to density, the density is a physical quantity that is defined as being

the raport between the mass of the object and its volume. However if you want to measure the density of an object you might want to determine its gravity force (weight)

from which knowing the gravitational acceleratin you can find its mass
where

is given in Newtons and

is given in
Answer:
16.6 °C
Explanation:
From the question given above, the following data were obtained:
Temperature at upper fixed point (Tᵤ) = 100 °C
Resistance at upper fixed point (Rᵤ) = 75 Ω
Temperature at lower fixed point (Tₗ) = 0 °C
Resistance at lower fixed point (Rₗ) = 63.00Ω
Resistance at room temperature (R) = 64.992 Ω
Room temperature (T) =?
T – Tₗ / Tᵤ – Tₗ = R – Rₗ / Rᵤ – Rₗ
T – 0 / 100 – 0 = 64.992 – 63 / 75 – 63
T / 100 = 1.992 / 12
Cross multiply
T × 12 = 100 × 1.992
T × 12 = 199.2
Divide both side by 12
T = 199.2 / 12
T = 16.6 °C
Thus, the room temperature is 16.6 °C
4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:
