1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
2 years ago
12

Please help me with this.

Mathematics
1 answer:
vodka [1.7K]2 years ago
7 0

The rate of change would be 300 bacteria per minute at 0.1 minutes past 1 PM

<h3>The exponential function of the bacteria</h3>

The given parameters are:

Initial, a = 20

At 30 minutes, Value = 500

An exponential function is represented as:

y = ab^t

Where a is the initial value.

So, we have:

y = 20b^t

After 30 minutes, we have:

20b^30 = 500

Divide both sides by 20

b^30 = 25

Take the 30th root of both sides

b = 1.11

Substitute b = 1.11 in y = 20b^t

y = 20(1.11)^t

Hence, the exponential model is y = 20(1.11)^t

<h3>Minutes to reach 11,000</h3>

This means that:

y = 11,000

So, we have:

20(1.11)^t = 11000

Divide both sides by 20

1.11^t = 550

Take the logarithm of both sides

tlog(1.1) = log(550)

Divide both sides by log(1.1)

t = 66

Hence, the population would reach 11,000 after 66 minutes

<h3>The population at 2PM</h3>

This means that:

t = 60 i.e. 60 minutes after 1PM

So, we have:

y = 20(1.11)^60

Evaluate

y = 10481

Hence, the population at 2PM is 10481

<h3>The rate of change at 2PM</h3>

In (c), we have:

y = 10481 ------ population at 2PM is 10481

t = 60

The rate of change is calculated as:

Rate = 10481/60

Evaluate

Rate = 174.68

Hence, the rate of change at 2PM is 174.68 bacteria per minute.

<h3>When the rate would be 300 bacteria per minute?</h3>

The rate of change is calculated as:

Rate = Population/Time

So, we have:

y/t = 300

This gives

y = 300t

Substitute y = 300t in y = 20(1.11)^t

300t = 20(1.11)^t

Divide both sides by 20

15t = (1.11)^t

Using a graphing calculator, we have:

t = 0.1

Hence, the rate would be 300 bacteria per minute at 0.1 minutes past 1 PM

Read more about exponential functions at:

brainly.com/question/11464095

#SPJ1

You might be interested in
Check out attachment:) I don't understand how do you find out the length ?? pls help with explanation thx
hjlf

Answer:

x=3.89

Step-by-step explanation:

I'll go in depth for you.

Before we figure out what we do, let understand what we know about this triangle.

  • We know that both triangles have a angle that measure 27°.
  • We also know EH=5
  • FG=9
  • ZG=7
  • We need to know how to find EZ

Notice how line EG and HF intersect at Angle Z. We know that if two lines intersect at an angle, it form angles called vertical angles. This means that the two angles that are vertical to each other are congruent.

This means that angle Z in both triangles both measure the same.

Now since both triangles have 2 congruent corresponding angles, we can say that the <em>Triangles</em><em> </em><em>are</em><em> </em><em>Similar</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>Angle-Angle</em><em> </em><em>Postulate</em><em>.</em>

<em>"</em><em>If</em><em> </em><em>two</em><em> </em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>of</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>congruent</em><em>,</em><em> </em><em>then</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>.</em><em>"</em>

<em>What</em><em> </em><em>is</em><em> </em><em>mean</em><em> </em><em>when</em><em> </em><em>Triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>?</em><em> </em>

<em>It</em><em> </em><em>means</em><em> </em><em>that</em><em> </em><em>the</em><em> </em><em>similar</em><em> </em><em>triangles</em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>equal</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>their</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>proportion</em><em>.</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em>

<em>EH</em><em> </em><em>and</em><em> </em><em>GF</em>

<em>EZ</em><em> </em><em>and</em><em> </em><em>ZG</em>

<em>HZ</em><em> </em><em>and</em><em> </em><em>HF</em><em>.</em>

<em>Our</em><em> </em><em>proportion</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>similar</em><em> </em><em>triangle</em><em>s</em><em> </em><em>is</em><em> </em>

<em>Any</em><em> </em><em>two</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>first</em><em> </em><em>triangle</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>must</em><em> </em><em>equal</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>second</em><em> </em><em>triangles</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>respectively</em><em>.</em>

<em>We</em><em> </em><em>know</em><em> </em><em>FG</em><em> </em><em>and</em><em> </em><em>ZG</em><em> </em><em>so</em><em> </em><em>let</em><em> </em><em>set</em><em> </em><em>up</em><em> </em><em>our</em><em> </em><em>first</em><em> </em><em>fraction</em>

<em>\frac{fg}{zg}</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>both</em><em> </em><em>are</em><em> </em>

  • <em>EH</em><em> </em><em>and</em><em> </em><em>EZ</em><em> </em><em>respectively</em><em> </em><em> </em><em>so</em><em> </em><em>our</em><em> </em><em>proportion</em><em> </em><em> </em><em>looks</em><em> </em><em>like</em>
  • <em>\frac{fg}{zg}  =  \frac{eh}{ez}</em>
  • <em>Plug</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>for</em><em> </em><em>each</em><em>.</em><em> </em><em>Let</em><em> </em><em>x</em><em> </em><em>represent</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>EZ</em>
  • <em>\frac{9}{7}  =  \frac{5}{x}</em>
  • <em>Cross</em><em> </em><em>Multiply</em>
  • <em>9x = 35</em>
  • <em>x = 3 \frac{8}{9}  = 3.89</em>
  • <em>So</em><em> </em><em>x</em><em>=</em><em>3</em><em>.</em><em>8</em><em>9</em>
3 0
3 years ago
Find the area of the square in inches and enter your answer below. Do not
Bumek [7]

Given:

Side length of square = 2 in

To find:

The area of the square

Solution:

Area of the square:

Area = side × side

        = 2 in × 2 in

Area = 4 in²

Therefore, the area of the square is 4 inches².

8 0
3 years ago
PLSS HELPPP!! Given vector u equals 15 times open angled bracket cos 45 degrees comma sin 45 degrees close angle bracket comma w
aksik [14]
The answer to your question is the 2 one
3 0
2 years ago
An apple tree originally costs $80 at the local nursery, but is on sale for 15% off. If a customer buying the tree has a coupon
attashe74 [19]
58 because 80 times 15 percent is 12. so you subtract 12 from 80 that gives you 68 then you subtract the coupon which is 10 dollars. you total is 58.
6 0
4 years ago
Use trigonometric identities to solve each equation within the given domain.
saul85 [17]
Do you need help or you just wanted the answers
5 0
3 years ago
Other questions:
  • I need help w 5 6 7. 8 9 nd 10
    14·1 answer
  • Round 345 to one significant number
    8·1 answer
  • Please answer this.. please :)
    15·2 answers
  • #1. 10, 13, 16, 19, ... O y = 3 + 10x y = 10 + 3x O y = 3 + 7x O y = 7+ 3x<br> it's algebra ​
    14·1 answer
  • Austin borrowed $3000 from the bank at a rate of 2.25% simple interest per year. How much total did he have to pay back after 5
    12·1 answer
  • 8.
    9·2 answers
  • A particular project can be completed by six people working eight hours a day for twenty days. To speed up completion of the pro
    13·1 answer
  • Express as a sum
    8·1 answer
  • Factor 1/7 out of 1/7x-2/7
    7·1 answer
  • The bounds for a discrete brownian walk is [-3, 4]. what is the probability that the escape happens at 4?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!