Answer:
probability at least one zero is 0.3439
Step-by-step explanation:
given data
last four digits = randomly selected
to find out
probability that for one such phone number the last four digits include at least one 0.
solution
we know there are total 10 digit
so we first find probability of non zero digit i.e.
Probability ( non zero ) = 9 /10 = 0.9
and now we find probability of none of digit zero only event happen n= 4 time in a row by multiplication rules i.e
Probability ( none zero in 4 digit ) = 
Probability ( none zero in 4 digit ) = 
Probability ( none zero in 4 digit ) = 0.6561
so we can say probability at least one zero = 1 - Probability ( none zero in 4 digit )
probability at least one zero = 1 - 0.6561
probability at least one zero is 0.3439
Answer:
40
Step-by-step explanation:
15 divided by 3 is 5
so each pound is 5 dollars.
now do 5 times 8
that gives you 40
the big bag is 40 dollars
Answer:
41.04 meters
Step-by-step explanation:
The questions which involve calculating the angles and the sides of a triangle either require the sine rule or the cosine rule. In this question, the two sides that are given are adjacent to each other the given angle is the included angle. The initial position is given by A. The tree is denoted as C and the fence post is denoted as B. Since the use of sine rule will complicate the question, it will be easier to solve this question using the cosine rule. Therefore, cosine rule will be used to calculate the length of BC. The cosine rule is:
BC^2 = AB^2 + AC^2 - 2*AB*AC*cos(BAC).
The question specifies that AC = 70 meters, BAC = 25°, and AB = 35 meters. Plugging in the values:
BC^2 = 35^2 + 70^2 - 2(35)(70)*cos(25°).
Simplifying gives:
BC^2 = 1684.091844.
Taking square root on the both sides gives BC = 41.04 meters (rounded to two decimal places).
Therefore, the distance between the point on the tree to the point on the fence post is 41.04 meters!!!
Answer:
W = 16 in
Step-by-step explanation:
P = 2L + 2W
56 = 2(12) + 2W
56 = 24 + 2W
56-24 = 2W
32 = 2W
W = 32/2
W = 16 in
Best regards