-2 + Y = 8
Y = 10
Plug in Y to the first equation, 10 + 4 = X
X = 14
Answer:
32.8 miles
Step-by-step explanation:
Amy is driving to Seattle. Suppose that the remaining distance to drive (in miles) is a linear function of her driving time (in minutes). When graphed, the function gives a line with a slope of -0.95. See the figure below. Amy has 48 miles remaining after 31 minutes of driving. How many miles will be remaining after 47 minutes of driving?
Answer: The general equation of a line is given as y = mx + c, where m is the slope of the line and c is the intercept on the y axis. Given that the slope is -0.95, substituting in the general equation :
y = -0.95x + c
Amy has 48 miles remaining after 31 minutes of driving, to find c, we substitute y = 48 and x = 31. Therefore:
48 = -0.95(31) + c
c = 48 + 0.95(31)
c = 48 + 29.45
c = 77.45
The equation of the line is
y = -0.95x + 77.45
After 47 minutes of driving, the miles remaining can be gotten by substituting x = 47 and finding y.
y = -0.95(47) + 77.45
y = -44.65 + 77.45
y = 32.8 miles
21 fewer stars than three times a number h
21 - (3 x h)
Answer:
y = 43x − 25
Step-by-step explanation:
Evaluate the function at x=1:
f(x) = 12x³ + 3x² + x + 2
f(1) = 12 + 3 + 1 + 2
f(1) = 18
Find the slope of the tangent line at x=1:
f'(x) = 36x² + 6x + 1
f'(1) = 36 + 6 + 1
f'(1) = 43
Point-slope form:
y − y₀ = m (x − x₀)
y − 18 = 43 (x − 1)
Convert to slope-intercept form:
y − 18 = 43x − 43
y = 43x − 25
Graph:
desmos.com/calculator/giumpkkphr