a + b ≥ 30, b ≥ a + 10, the system of inequalities could represent the values of a and b
option A
<u>Step-by-step explanation:</u>
Here we have , The sum of two positive integers, a and b, is at least 30. The difference of the two integers is at least 10. If b is the greater integer, We need to find which system of inequalities could represent the values of a and b . Let's find out:
Let two numbers be a and b where b>a . Now ,
- The sum of two positive integers, a and b, is at least 30
According to the given statement we have following inequality :
⇒ 
- The difference of the two integers is at least 10
According to the given statement we have following inequality :
⇒ 
⇒ 
⇒ 
Therefore , Correct option is A) a + b ≥ 30, b ≥ a + 10
Answer:
The statements describe transformations performed in f(x) to create g(x) are:
a translation of 5 units up ⇒ c
a vertical stretch with a scale factor of 2 ⇒ d
Step-by-step explanation:
- If f(x) stretched vertically by a scale factor m, then its image g(x) = m·f(x)
- If f(x) translated vertically k units, then its image h(x) = f(x) + k
Let us use these rule to solve the question
∵ f(x) = x²
∵ g(x) is created from f(x) by some transformation
∵ g(x) = 2x² + 5
→ Substitute x² by f(x) in g(x)
∴ g(x) = 2f(x) + 5
→ Compare it with the rules above
∴ m = 2 and k = 5
→ That means f(x) is stretched vertically and translated up
∴ f(x) is stretched vertically by scal factor 2
∴ f(x) is translated 5 uints up
The statements describe transformations performed in f(x) to create g(x) are:
- a translation of 5 units up
- a vertical stretch with a scale factor of 2
If each game costs 2 tokens, 120 tokens would equal 60 games.
1. 5(n+4)
2. 5h+30
3. 75/h
4. seven more than twice a number
5. six times the sum of a number and nine
Please give brainliest answer
Answer:
what's your question that you're asking??