Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B
Answer:
I know 1, that is in the case of a burning of a candle.
Explanation:
No...........................................................................Work for them urself
<u>Answer</u>
1) A. 96 Candelas
2) A. Both of these types of lenses have the ability to produce upright images.
3) C. 5 meters
<u>Explanation</u>
Q1
The formula for calculation the luminous intensity is;
Luminous intensity = illuminance × square radius
Lv = Ev × r²
= 6 × 4²
= 6 × 16
= 96 Candelabra
Q2
For converging lenses, an upright image is formed when the object is between the lens and the principal focus while a diverging lens always forms and upright image.
A. Both of these types of lenses have the ability to produce upright images.
Q3
Luminous intensity = illuminance × square radius
square radius = Luminous intensity/ illuminance
r² = 100/4
= 25
r = √25
= 5 m
Answer:
The ball reaches Barney head in 
Explanation:
From the question we are told that
The rise velocity is 
The height considered is 
The horizontal velocity of the large object is 
Generally from kinematic equation

Here s is the distance of the object from Barney head ,
u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter
So

So

= 
Solving the above equation using quadratic formula
The value of t obtained is 