Answer:
1.7
Explanation:
Density = M/V
When you divide 4.52 by 2.6, you get 1.738461538, which can be simplified to 1.7.
Answer:
1 billion molecules O₂
Explanation:
From my research, a human red blood cell contains approximately 270 million hemoglobin molecules.
A hemoglobin molecule contains four heme groups, <em>each of which has an iron ion forming a coordination complex that carries every dioxygen molecule. </em>Therefore for each hemoglobin molecule, we will have 4 dioxygen molecules. The heme groups are responsible for the transport of every dioxygen and other diatomic gases.
Hence, the number of O₂ molecules in a red blood cell saturated with 100% will be:

So, the correct answer is 1 billion of O₂ molecules.
Have a nice day!
Answer:
The sugar particles are so small that they have dissolved in the water, and can easily pass through the filter.
Answer:
![[base]=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D0.28M)
Explanation:
Hello,
In this case, by using the Henderson-Hasselbach equation one can compute the concentration of acetate, which acts as the base, as shown below:
![pH=pKa+log(\frac{[base]}{[acid]} )\\\\\frac{[base]}{[acid]}=10^{pH-pKa}\\\\\frac{[base]}{[acid]}=10^{4.9-4.76}\\\\\frac{[base]}{[acid]}=1.38\\\\](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7BpH-pKa%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7B4.9-4.76%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D1.38%5C%5C%5C%5C)
![[base]=1.38[acid]=1.38*0.20M=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D1.38%5Bacid%5D%3D1.38%2A0.20M%3D0.28M)
Regards.