Answer:
d
Step-by-step explanation:
for this function you have to replace the function of g(x) where there's x in the function f(x) that's what the expression f.g(x) means and so this is going to be
3(x²+1)+2
I hope this helps
Answer:
v=0
Step-by-step explanation:
Answer:
r² = 0.5652 < 0.7 therefore, the correlation between the variables does not imply causation
Step-by-step explanation:
The data points are;
X, Y
0.7, 1.11
21.9, 3.69
18, 4
16.7, 3.21
18, 3.7
13.8, 1.42
18, 4
13.8, 1.42
15.5, 3.92
16.7, 3.21
The correlation between the values is given by the relation
Y = b·X + a


Where;
N = 10
∑XY = 499.354
∑X = 153.1
∑Y = 29.68
∑Y² = 100.546
∑X² = 2631.01
(∑ X)² = 23439.6
(∑ Y)² = 880.902
From which we have;


![r = \dfrac{N\sum XY - \left (\sum X \right )\left (\sum Y \right )}{\sqrt{\left [N\sum X^{2} - \left (\sum X \right )^{2} \right ]\times \left [N\sum Y^{2} - \left (\sum Y \right )^{2} \right ]}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cdfrac%7BN%5Csum%20XY%20-%20%5Cleft%20%28%5Csum%20X%20%20%5Cright%20%29%5Cleft%20%28%5Csum%20Y%20%20%5Cright%20%29%7D%7B%5Csqrt%7B%5Cleft%20%5BN%5Csum%20X%5E%7B2%7D%20-%20%5Cleft%20%28%5Csum%20X%20%20%5Cright%20%29%5E%7B2%7D%20%5Cright%20%5D%5Ctimes%20%5Cleft%20%5BN%5Csum%20Y%5E%7B2%7D%20-%20%5Cleft%20%28%5Csum%20Y%20%20%5Cright%20%29%5E%7B2%7D%20%5Cright%20%5D%7D%7D)

r² = 0.5652 which is less than 0.7 therefore, there is a weak relationship between the variables, and it does not imply causation.
Answer:
y = -
x + 2
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c
Given
3x + 4y = 8 ( subtract 3x from both sides )
4y = - 3x + 8 ( divide all terms by 4 )
y = -
x + 2 ← in slope- intercept form
Answer:
A. 0.1035
B. 0.1406
C. 0.1025
Step-by-step explanation:
Given that:
the number of sample questions (n) = 5
The probability of choosing the correct choice (p) = 1/4 = 0.25
Suppose X represents the number of question that are guessed correctly.
Then, the required probability that she gets the majority of her question correctly is:
P(X>2) = P(X=3) + P(X =4) + P(X = 5)

![P(X>2) = \Bigg [ \dfrac{5!}{3!(5-3)!} \times (0.25)^3 (1-0.25)^{2} + \dfrac{5!}{4!(5-4)!} \times (0.25)^4 (1-0.25)^{1} +\dfrac{5!}{5!(5-5)!} \times (0.25)^5 (1-0.25)^{0} \Bigg ]](https://tex.z-dn.net/?f=P%28X%3E2%29%20%3D%20%5CBigg%20%5B%20%5Cdfrac%7B5%21%7D%7B3%21%285-3%29%21%7D%20%5Ctimes%20%280.25%29%5E3%20%281-0.25%29%5E%7B2%7D%20%2B%20%5Cdfrac%7B5%21%7D%7B4%21%285-4%29%21%7D%20%20%5Ctimes%20%280.25%29%5E4%20%281-0.25%29%5E%7B1%7D%20%2B%5Cdfrac%7B5%21%7D%7B5%21%285-5%29%21%7D%20%20%5Ctimes%20%280.25%29%5E5%20%281-0.25%29%5E%7B0%7D%20%5CBigg%20%5D)
P(X>2) = [ 0.0879 + 0.0146 + 0.001 ]
P(X>2) = 0.1035
B.
Recall that
n = 5 and p = 0.25
The probability that the first Q. she gets right is the third question can be computed as:

Since, x = 3



P(X=3) = 0.1406
C.
The probability she gets exactly 3 or exactly 4 questions right is as follows:
P(X. 3 or 4) = P(X =3) + P(X =4)
![P(X=3 \ or \ 4) = [ (^{5}C_{3}) \times (0.25)^3 (1-0.25)^{5-3} + (^{5}C_{4}) \times (0.25)^4 (1-0.25)^{5-4}]](https://tex.z-dn.net/?f=P%28X%3D3%20%5C%20or%20%5C%204%29%20%3D%20%20%5B%20%28%5E%7B5%7DC_%7B3%7D%29%20%5Ctimes%20%280.25%29%5E3%20%281-0.25%29%5E%7B5-3%7D%20%2B%20%28%5E%7B5%7DC_%7B4%7D%29%20%5Ctimes%20%280.25%29%5E4%20%281-0.25%29%5E%7B5-4%7D%5D)
![P(X=3 \ or \ 4) = \Bigg [ \dfrac{5!}{3!(5-3)!} \times (0.25)^3 (1-0.25)^{2} + \dfrac{5!}{4!(5-4)!} \times (0.25)^4 (1-0.25)^{1} \Bigg ]](https://tex.z-dn.net/?f=P%28X%3D3%20%5C%20or%20%5C%204%29%20%3D%20%5CBigg%20%5B%20%5Cdfrac%7B5%21%7D%7B3%21%285-3%29%21%7D%20%5Ctimes%20%280.25%29%5E3%20%281-0.25%29%5E%7B2%7D%20%2B%20%5Cdfrac%7B5%21%7D%7B4%21%285-4%29%21%7D%20%20%5Ctimes%20%280.25%29%5E4%20%281-0.25%29%5E%7B1%7D%20%5CBigg%20%5D)
P(X = 3 or 4) = [ 0.0879 + 0.0146 ]
P(X=3 or 4) = 0.1025