Answer:
month = input("Input the month (e.g. January, February etc.): ")
day = int(input("Input the day: "))
if month in ('January', 'February', 'March'):
season = 'winter'
elif month in ('April', 'May', 'June'):
season = 'spring'
elif month in ('July', 'August', 'September'):
season = 'summer'
else:
season = 'autumn'
if (month == 'March') and (day > 19):
season = 'spring'
elif (month == 'June') and (day > 20):
season = 'summer'
elif (month == 'September') and (day > 21):
season = 'autumn'
elif (month == 'December') and (day > 20):
season = 'winter'
print("Season is",season)
Explanation:
Answer:
Given Data:
concentration of sewer Csewer = 1.2 g/L
converting into mg/L = Csewer = 1.2 g/L x 1000 mg/g = 1200 mg/L
flow rate of sewer Qsewer = 2000 L/min
concentration of sewer Cstream = 20 mg/L
flow rate of sewer Qstream = 2m3/s
converting Q into L/min = 2m3/s x 1000 x 60 = 120000 L/min
mass diagram is
Answer:
Logic NOR Gate Equivalent
The Boolean expression for a logic NOR gate is denoted by a plus sign, ( + ) with a line or Overline, ( ‾‾ ) over the expression to signify the NOT or logical negation of the NOR gate giving us the Boolean expression of: A+B = Q.
Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.