Answer: That you are dressed appropriately, to speak in a formal manner, and to be confident in your answers.
Given Information:
Inductance = L = 5 mH = 0.005 H
Time = t = 2 seconds
Required Information:
Current at t = 2 seconds = i(t) = ?
Energy at t = 2 seconds = W = ?
Answer:
Current at t = 2 seconds = i(t) = 735.75 A
Energy at t = 2 seconds = W = 1353.32 J
Explanation:
The voltage across an inductor is given as
![V(t) = 5(1-e^{-0.5t})](https://tex.z-dn.net/?f=V%28t%29%20%3D%205%281-e%5E%7B-0.5t%7D%29)
The current flowing through the inductor is given by
![i(t) = \frac{1}{L} \int_0^t \mathrm{V(t)}\,\mathrm{d}t \,+ i(0)](https://tex.z-dn.net/?f=i%28t%29%20%3D%20%5Cfrac%7B1%7D%7BL%7D%20%5Cint_0%5Et%20%5Cmathrm%7BV%28t%29%7D%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%2C%2B%20i%280%29)
Where L is the inductance and i(0) is the initial current in the inductor which we will assume to be zero since it is not given.
![i(t) = \frac{1}{0.005} \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \,+ 0\\\\i(t) = 200 \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \\\\i(t) = 200 \: [ {5\: (t + \frac{e^{-0.5t}}{0.5})]_0^t \\i(t) = 200\times5\: \: [ { (t + 2e^{-0.5t} + 2 )] \\](https://tex.z-dn.net/?f=i%28t%29%20%3D%20%5Cfrac%7B1%7D%7B0.005%7D%20%5Cint_0%5Et%20%5Cmathrm%7B5%281-e%5E%7B-0.5t%7D%7D%29%20%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%2C%2B%200%5C%5C%5C%5Ci%28t%29%20%3D%20200%20%5Cint_0%5Et%20%5Cmathrm%7B5%281-e%5E%7B-0.5t%7D%7D%29%20%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%5C%5C%5Ci%28t%29%20%3D%20200%20%5C%3A%20%5B%20%7B5%5C%3A%20%28t%20%2B%20%5Cfrac%7Be%5E%7B-0.5t%7D%7D%7B0.5%7D%29%5D_0%5Et%20%5C%5Ci%28t%29%20%3D%20200%5Ctimes5%5C%3A%20%5C%3A%20%5B%20%7B%20%28t%20%2B%202e%5E%7B-0.5t%7D%20%2B%202%20%29%5D%20%5C%5C)
![i(t) = 1000t +2000e^{-0.5t} -2000\\](https://tex.z-dn.net/?f=i%28t%29%20%3D%201000t%20%2B2000e%5E%7B-0.5t%7D%20-2000%5C%5C)
So the current at t = 2 seconds is
![i(t) = 1000(2) +2000e^{-0.5(2)} -2000\\\\i(t) = 735.75 \: A](https://tex.z-dn.net/?f=i%28t%29%20%3D%201000%282%29%20%2B2000e%5E%7B-0.5%282%29%7D%20-2000%5C%5C%5C%5Ci%28t%29%20%3D%20735.75%20%5C%3A%20A)
The energy stored in the inductor at t = 2 seconds is
![W = \frac{1}{2}Li(t)^{2}\\\\W = \frac{1}{2}0.005(735.75)^{2}\\\\W = 1353.32 \:J](https://tex.z-dn.net/?f=W%20%3D%20%5Cfrac%7B1%7D%7B2%7DLi%28t%29%5E%7B2%7D%5C%5C%5C%5CW%20%3D%20%5Cfrac%7B1%7D%7B2%7D0.005%28735.75%29%5E%7B2%7D%5C%5C%5C%5CW%20%3D%201353.32%20%5C%3AJ)
Answer:
# Program is written in python
# 22.1 Using the count method, find the number of occurrences of the character 's' in the string 'mississippi'.
# initializing string
Stringtocheck = "mississippi"
# using count() to get count of s
counter = Stringtocheck.count('s')
# printing result
print ("Count of s is : " + str(counter))
# 2.2 In the string 'mississippi', replace all occurrences of the substring 'iss' with 'ox
# Here, we'll make use of replace() method
# Prints the string by replacing iss by ox
print(Stringtocheck.replace("iss", "ox"))
#2.3 Find the index of the first occurrence of 'p' in 'mississippi'
# declare substring
substring = 'p'
# Find index
index = Stringtocheck.find(substring)
# Print index
print(index)
# End of program
Answer:
Please see the attached file for the complete answer.
Explanation: