1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svlad2 [7]
2 years ago
10

A three-point bending test is performed on a glass specimen having a rectangular cross section of height d 5 mm (0.2 in.) and wi

dth b 10 mm (0.4 in.); the distance between support points is 45 mm (1.75 in.). Compute the flexural strength if the load at fracture is 290 N (65 lb
Engineering
1 answer:
Anon25 [30]2 years ago
4 0

Answer:

The flexural strength of a specimen is = 78.3 M pa

Explanation:

Given data

Height = depth = 5 mm

Width = 10 mm

Length L = 45 mm

Load = 290 N

The flexural strength of a specimen is given by

\sigma = \frac{3 F L}{2 bd^{2} }

\sigma = \frac{3(290)(45)}{2 (10)(5)^{2} }

\sigma = 78.3 M pa

Therefore the flexural strength of a specimen is = 78.3 M pa

You might be interested in
A 150 MVA, 24 kV, 123% three-phase synchronous generator supplies a large network. The network voltage is 27 kV. The phase angle
Aleks04 [339]

Answer:

the generator induced voltage is 60.59 kV

Explanation:

Given:

S = 150 MVA

Vline = 24 kV = 24000 V

X_{s} =1.23(\frac{V_{line}^{2}  }{s} )=1.23\frac{24000^{2} }{1500} =4723.2 ohms

the network voltage phase is

V_{phase} =\frac{V_{nline} }{\sqrt{3} } =\frac{27}{\sqrt{3} } =15.58kV

the power transmitted is equal to:

|E|=\frac{P*X_{s} }{3*|V_{phase}|sinO } ;if-O=60\\|E|=\frac{300*4.723}{3*15.58*sin60} =34.98kV

the line induced voltage is

|E_{line} |=\sqrt{3} *|E|=\sqrt{3} *34.98=60.59kV

7 0
3 years ago
Your local hospital is considering the following solution options to address the issues of congestion and equipment failures at
kiruha [24]
Jsjhjrhwjdbwjwjrueiworuuwud
4 0
2 years ago
The coefficient of static friction for both wedge surfaces is μw=0.4 and that between the 27-kg concrete block and the β=20° inc
balandron [24]

Assuming  the wedge has an angle of 5°.The minimum value of the force P that is required to begin moving the block up the incline is: 322.84 N.

<h3>Minimum value of force P</h3>

First step

Using this formula to find the weight of the block

W=mg

W=27×9.81

W=264.87 N

Second step

Angles of friction ∅A and ∅B

∅A=tan^-1(μA)

∅A=tan^-1(0.70)

∅A=34.99°

∅B=tan^-1(μB)

∅B=tan^-1(0.40)

∅B=21.80°

Third step

Equate the sum of forces in m-direction to 0 in order to find the reaction force at B.

∑fm=0

W sin (∅A+20°)  + RB cos (∅B+∅A)=0

264.87 sin(34.99°+20°) + RB cos (21.80°+34.99°)=0

216.94+0.5477Rb=0

RB=216.94/0.5477

RB=396.09 N

Fourth step

Equate the sum of forces in x-direction to 0 in order to find force Rc.

∑fx=0

RB cos (∅B) - RC cos (∅B+ 5°)=0

396.09 cos(21.80°) - RC cos (21.80°+5°)=0

RC=396.09 cos(21.80°)/cos(26.80°)

RC=412.02 N

Last step

Equate the sum of forces in y-direction to 0 in order to find force P required to move the block up the incline.

∑fy=0

RB sin (∅B) + RC sin (∅B)-P=0

P=Rb sin (∅B) + RC sin (5°+∅B)

P=396.09 sin(21.80°) +412.02sin (5°+21.80°)

P=322.84 N

Inconclusion the minimum value of the force P that is required to begin moving the block up the incline is: 322.84 N.

Learn more about Minimum value of force P here:brainly.com/question/20522149

7 0
2 years ago
HOW DO I FIX THIS SIDE BAR ITS THE FIRST TIME THIS HAPPEND (the black bar with all my things)
sineoko [7]
Click and drag it down to the bottom bro
6 0
3 years ago
Read 2 more answers
A light bar AD is suspended from a cable BE and supports a 20-kg block at C. The ends A and D of the bar are in contact with fri
babymother [125]

Answer:

Tension in cable BE= 196.2 N

Reactions A and D both are  73.575 N

Explanation:

The free body diagram is as attached sketch. At equilibrium, sum of forces along y axis will be 0 hence

T_{BE}-W=0 hence

T_{BE}=W=20*9.81=196.2 N

Therefore, tension in the cable, T_{BE}=196.2 N

Taking moments about point A, with clockwise moments as positive while anticlockwise moments as negative then

196.2\times 0.125- 196.2\times 0.2+ D_x\times 0.2=0

24.525-39.24+0.2D_x=0

D_x=73.575 N

Similarly,

A_x-D_y=0

A_x=73.575 N

Therefore, both reactions at A and D are 73.575 N

7 0
3 years ago
Other questions:
  • A 10-mm steel drill rod was heat-treated and ground. The measured hardness was found to be 290 Brinell. Estimate the endurance s
    14·1 answer
  • The collar A, having a mass of 0.75 kg is attached to a spring having a stiffness of k = 200 N/m . When rod BC rotates about the
    15·1 answer
  • 37. In ______ combination of drugs, the effects of one drug cancel or diminish
    12·1 answer
  • Help Please!!!!!!!<br><br> Whatever3443<br> Please help!
    9·2 answers
  • 2 Air enters the compressor of a cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The compres
    7·1 answer
  • Linus is using a calculator to multiply 5,426 and 30. He enters 5,426 x 300 by mistake. What can Linus do to correct his mistake
    7·1 answer
  • Safety-in engineering as with everything else is all about trying to maximize or create the hazards involved with what you are d
    6·2 answers
  • The image shows the relative positions of Earth and the Sun for each of the four seasons. Earth travels in an elliptical orbit a
    11·2 answers
  • What flight patterns do groups of birds utilize and why?
    10·1 answer
  • How to clean a snowblower carburetor without removing it.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!