Answer:
Q = 14.578 m³/s
Explanation:
Given
We use the Manning Equation as follows
Q = (1/n)*A*(∛R²)*(√S)
where
- Q = volumetric water flow rate passing through the stretch of channel (m³/s for S.I.)
-
A = cross-sectional area of flow perpendicular to the flow direction, (m² for S.I.)
-
S = bottom slope of channel, m/m (dimensionless) = 2.5% = 0.025
-
n = Manning roughness coefficient (empirical constant), dimensionless = 0.023
-
R = hydraulic radius = A/P (m for S.I.) where
:
-
A = cross-sectional area of flow as defined above,
-
P = wetted perimeter of cross-sectional flow area (m for S.I.)
we get A as follows
A = (B*h)/2
where
B = 5 m (the top width of the flowing channel)
h = (B/2)*(m) = (5 m/2)*(1/2) = 1.25 m (the deep)
A = (5 m*1.25 m/2) = 3.125 m²
then we find P
P = 2*√((B/2)²+h²) ⇒ P = 2*√((2.5 m)²+(1.25 m)²) = 5.59 m
⇒ R = A/P ⇒ R = 3.125 m²/5.59 m = 0.559 m
Substituting values into the Manning equation gives:
Q = (1/0.023)*(3.125 m²)*(∛(0.559 m)²)*(√0.025)
⇒ Q = 14.578 m³/s
Answer:
The code is given below in python
# Code Block 1
count = 0 # count variable
total = 0 # total variable
enter = '' # input variable
while enter != 'stop':
enter = input('Enter a grade:' )
if enter != 'stop' and enter.isdigit():
total += int(enter) # add to total value
count = count + 1 # then to the count
print float(total) / count
# Code Block 2
numbers = []
while enter != 'stop':
enter = input('Enter a grade:' )
if enter != 'stop':
numbers.append(int(enter))
print sum(numbers) / float(len(numbers))
Answer:
please give me brainlist and follow
Explanation:
Mild steel can be converted into high carbons steel by which of the following heat treatment process? Explanation: Case hardening, also referred as carburizing increases carbon content of steel, thus, imparting hardness to steel.
Answer: A fly wheel having a mass of 30kg was allowed to swing as pendulum about a knife edge at inner side of the rim as shown in figure.
Explanation: