Answer:
The volume of water to be added is 0.175 liters of water
Explanation:
The given concentration of the nitric acid = 55% (M/M)
The mass of the nitric acid solution = 100 gm
The concentration solution is to diluted to = 20% (M/M)
The 100 g 55%(M/M) nitric acid solution gives 55g nitric acid in 100 g of solution
Therefore, to have 20% (M/M) nitric acid solution with the 55 g nitric acid, we get
Let "x" represent the volume of the resulting solution, we have;
20% of x = 55 g of nitric acid
∴ 20/100 × x = 55 g
x = 55 g × 100/20 = 275 g
The mass of extra water to be added = The mass of the 20%(M/M) solution solution of nitric acid - The current mass of the 55%(M/M) solution of nitric acid
The mass of extra water to be added = 275 g - 100 g = 175 g
Volume = Mass/Density
The density of water ≈ 1 g/ml
∴ The volume of water to be added that gives 175 g of water = 175 g/(1 g/ml) = 175 ml. = 0.175 l
The volume of water to be added = 0.175 liters of water.
Answer:
It's C, direct and peripheral.
Explanation:
Just took the test
Answer:
Energy in an ecosystem comes from the Sun.
Explanation:
It is a major source of energy for organisms, plants and the whole ecosystem basically.
Given that the volume and amount of water are kept constant,
P/T = constant
P₁/T₁ = P₂/T₂
Normal atmospheric pressure is 746 mmHg and normal boiling point of water is 100 °C.
746/100 = 589/T₂
T₂ = 79.0 °C
Answer : The maximum amount of nickel(II) cyanide is 
Explanation :
The solubility equilibrium reaction will be:

Initial conc. 0.220 0
At eqm. (0.220+s) 2s
The expression for solubility constant for this reaction will be,
![K_{sp}=[Ni^{2+}][CN^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BNi%5E%7B2%2B%7D%5D%5BCN%5E-%5D%5E2)
Now put all the given values in this expression, we get:


Therefore, the maximum amount of nickel(II) cyanide is 