Answer:
The concentration and pKa of an acid and its conjugate base can limit the buffering capacity of a molecule.
Explanation:
A buffer is an acid and its conjugate base and the quality of it depends on its buffer capacity. This buffer capacity is the resistance to change the pH of the solution when strong acids or bases are added. The buffer capacity is related to the buffer concentration, the concentration of the acid end its conjugate base. Also, every acid has a pKa and the buffer capacity is at its maximum at the pKa value and can buffer the solution between ± 1 the pKa value.
Answer:
0.50 g/mL
Explanation:
Formula of Density,
D = mass / volume
Mass = 12.2 g
Volume = 54.4 mL - 30.0 mL = 24.4 mL
Putting values,
D = 12.2 g / 24.4 mL
D = 0.50 g/mL
im pretty sute the answer would be number 4.
mark brainliest :)
Answer:
The chemical equation by putting, a 2 on C₅H₁₂O, 15 on O₂, 10 on CO₂ , and 12 on H₂O in the equation;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Explanation:
- Chemical equations are balanced by putting coefficients on the reactants and products to ensure the total number of atoms on the left side equal to those on the right side.
- Balancing chemical equations is done to make chemical equations obey the law of conservation of mass.
- According to the law of conservation of mass, the mass of the reactants should always be equal to the mass of products.
- This is done by balancing chemical equations to ensure the total number of atoms on the left side is equal to that on the right side.
- Therefore, the balanced equation is;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Answer:
1. water will freeze at a temperature below 32 degrees fahrenheit 0 degree celsius.
2. Ice will melt at a temperature above 32 degrees fahrenheit 0 degrees celsius.
3. water boils at 212 degrees fahrenheit or 100 degrees celsius.