The answer is Thickness of solution.
The Beer-Lambert Law equation has the following form:
A=E×b×c
Where A is absorbance, E <span>is the molar absorbtivity, </span>b is the path length of the sample and c <span>is the concentration of the compound in solution.
</span>
<span>Lamber-Ber's law shows that the absorbance of a solution is directly proportional to the concentration of the species to be absorbed, as well as the length of the path. For example, if the length of the path is constant, the UV / VIS spectroscopy can be used to determine the concentration of the absorbent substance in the solution.</span>
Explanation:
Scientist Evidence Model
Dalton Gases indivisible, solid and spheres
J.J Thomson Deflected beam Negative charges evenly scattered
through positively charged mass of
matter.
Rutherford Deflection of alpha atomic model
particles passing
through the gold foil
The emboldened words are the answer.
- John Dalton proposed the first model of the atoms by his works on gases. He postulated the Dalton's law of partial pressure.
- He suggested that gases are made of tiny particles called atoms.
- J.J Thomson proposed the plum pudding model of the atom in which the charges are evenly scattered through the positively charged mass of matter.
- The gold foil experiment by Rutherford brought the atomic model of the atoms in the front-light.
- The model suggests a small positively charged center which the mass of the atom.
- The outer space is occupied by the electrons.
Learn more:
Rutherford brainly.com/question/1859083
#learnwithBrainly
Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>
NaCl - also known as sodium chloride or table salt; an ionic bond; it’s a chemical compound, so both
SO2 - also known as sulfur dioxide; a covalent bond; nonmetal
CaO - also known as calcium oxide; an ionic bond; metal
HF - also known as hydrogen fluoride; polar covalent; metal
NO2 - also known as nitrogen dioxide; covalent; nonmetal
H2O - also known as water; covalent; nonmetal