The experiment involving the determination of the number of ice cubes required to keep the temperature of the glass under 15 degrees Celcius, the following things have to be kept in mid:
- The<u> temperature</u> of the surroundings
- The initial temperature of the <u>glass</u>
- The <u>number of ice cubes </u>added to the water in the glass
In order to keep into consideration the changing environmental temperatures (which is a variable in the experiment), the experiment had to be conducted daily to get <u><em>accurate results </em></u>keeping into consideration all the factors.
brainly.com/question/11256472
In quantum matter, all things in the world are made up of even smaller particles than the atom. These are called the subatomic particles: neutron, proton and electron. A beta particle is simply an electron. It is an electromagnetic particle or wave. Electromagnetic particles are high-energy particles that are emitted by the atom during radioactive decay. Since it is an electron, its charge must be -1 and it must come from outside the nucleus of the atom. From the choices, the answers would be:
<span>is electromagnetic energy
</span><span>has a -1 charge</span>
Answer:
A. Peroxide breaking down into water and oxygen
Explanation:
Generally when it comes to changes, there are physical and chemical changes. In physical changes, there are no new substances been formed, however in chemical change new substances are formed.
A. Peroxide breaking down into water and oxygen
This is a chemical change.
B
. Bubbles forming when a pot of water is heated
This is a physical change
C. A pair of jeans soaked in water drying after hanging outside
This is a physical change
D
. A block of ice decreasing in size due to a change in temperature
This is a physical change.
Only option A is different from the rest,hence this is the answer.
The person would look B) in the nucleus.
Hope this helps!
-Payshence xoxo
Answer:
In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity.