Answer : The value of
for the final reaction is, 
Explanation :
The following equilibrium reactions are :
(1)

(2)

(3)

The final equilibrium reaction is :

Now we have to calculate the value of
for the final reaction.
First half the equation 1, 2 and 3 that means we are taking square root of equilibrium constant and then add all the equation 1, 2 and 3 that means we are multiplying all the equilibrium constant, we get the final equilibrium reaction and the expression of final equilibrium constant is:

Now put all the given values in this expression, we get :


Therefore, the value of
for the final reaction is, 
Answer:
B. Bohr’s model electrons cannot exist between orbits, but in the electron cloud model, the location of the electrons cannot be predicted.
AND
C. The modern model explains all available data about atoms; Bohr’s model does not.
Explanation:
The answers are right on Edge. :)
Answer:
decrease the volume of the cylinder.
Explanation:
In order to be able to solve this question we have to understand what Boyle's law is. According to Boyle's law; at constant temperature the pressure of a given mass of gas is inversely proportional to to its volume.
The Boyle's law shows us the relationship between the pressure and the volume. So, the Important thing to note hear is that if the volume in a container is decreased then the pressure will increase (and vice versa) due to the fact that as the volume decreases the particles in that container makes more collision which will make the pressure to increase.
Since, the piston is moveable it means that we can decrease and increase the volume in the cylinder. So, if the decrease the volume of the cylinder then we will have an increase in the pressure of the gas below the piston.
22.7 liters
The molar volume of an ideal gas depends on the temperature and pressure. One mole of any ideal gas occupies 22.7 liters at 0 0C and 1 bar (STP).
Hope this helped
<span>If you look at the chlorine box, with the symbol Cl, you see the atomic mass is equal to 35.453 atomic mass units. This is the weighted average mass of chlorine, including its isotopes, as found in nature. This also means that one mole of chlorine atoms has a mass of 35.453 grams.</span>