First you calculate the pOH of the solution:
pH+ pOH = 14
3.25 + pOH = 14
pOH = 14 - 3.25
pOH = 10.75
<span>Concentration of [OH]</span>⁻<span> in solution:
</span>
[ OH⁻ ] =

[ OH⁻ ] = 10^ - 10.75
[OH⁻] = 1.778 x 10⁻¹¹ Mhope this helps !
Remember that:
number of moles = mass/molar mass
First, we get the molar mass of the nitrogen gas molecule:
It is known the the nitrogen gas is composed of two nitrogen atoms, each with molar mass 14 gm (from the periodic table)
Therefore, molar mass of nitrogen gas = 14 x 2 = 28 gm
Second we calculate the mass of the precipitate:
we have number of moles = 0.03 moles (given)
and molar mass = 28 gm (calculated)
Using the equation mentioned before,
mass = number of moles x molar mass = 0.03 x 28 = 0.84 gm
Option (i) would have the highest 2nd Ionization Energy.
Option (i) is Sodium.
Can be Written as 2, 8 , 1
For its 1st Ionization energy... It'd be extremely easy to remove that Electron cos its on the outermost shell.
Now After Removing that Electron...
Sodium's Electronic Configuration Reduces to that of Neon Which is 2, 8.
Neon has a very stable Octet.
It would take an ENORMOUS amount of energy to break its Octet stability... that is... Remove 1 electron from its Octet.
So
Option (i) [Sodium] has the highest 2nd Ionization Energy
Answer: 250 kJ
Explanation: According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to Hess’s law, the chemical equation can be treated as algebraic expressions and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
(1)
(2)
Net chemical equation:
(3)
Adding 1 and 2 we get,
(4)
Now dividing equation (4) by 4, we get
(4)