Answer:
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Explanation:
Step 1: Data given
Initial temperature = 10.0 °C
Final temperature = 25.0 °C
Energy required = 30000 J
Mass of the object = 40.0 grams
Step 2: Calculate the specific heat capacity of the object
Q = m* c * ΔT
⇒With Q = the heat required = 30000 J
⇒with m = the mass of the object = 40.0 grams
⇒with c = the specific heat capacity of the object = TO BE DETERMINED
⇒with ΔT = The change in temperature = T2 - T2 = 25.0 °C - 10.0°C = 15.0 °C
30000 J = 40.0 g * c * 15.0 °C
c = 30000 J / (40.0 g * 15.0 °C)
c = 50 J/g°C
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Answer:
13.20 cm/s is the rate at which the water level is rising when the water level is 4 cm.
Explanation:
Length of the base = l
Width of the base = w
Height of the pyramid = h
Volume of the pyramid = 
We have:
Rate at which water is filled in cube = 
Square based pyramid:
l = 6 cm, w = 6 cm, h = 13 cm
Volume of the square based pyramid = V





Differentiating V with respect to dt:




Putting, h = 4 cm


13.20 cm/s is the rate at which the water level is rising when the water level is 4 cm.
Look it up online you will find it
Answer:
Where the products are H2O and Ba(NO3)2
Explanation:
A base, as, barium hydroxide (Ba(OH)2) reacts with an acid (HNO3), producing water (H2O), and the related salt (Ba(NO3)2) in a reaction called <em>neutralization reaction.</em>
The balanced reaction is:
Ba(OH)2 + 2 HNO3 → 2 H2O + Ba(NO3)2
<em>Where the products are H2O and Ba(NO3)2</em>