Answer:
An initial velocity that is faster than a final velocity
Explanation:
Edg 2020
When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
The enthalpy of solution of KOH is -57.6 kJ/mol. We can calculate the heat released by the solution (Qr) of 3.66 g of KOH considering that the molar mass of KOH is 56.11 g/mol.

According to the law of conservation of energy, the sum of the heat released by the solution of KOH (Qr) and the heat absorbed by the solution (Qa) is zero.

150.0 mL of solution with a density of 1.02 g/mL were prepared. The mass (m) of the solution is:

Given the specific heat capacity of the solution (c) is 4.184 J/g・°C, we can calculate the change in the temperature (ΔT) of the solution using the following expression.

When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
Learn more: brainly.com/question/4400908
the volume will be 0.84mol of Y
Answer:
0.05263158 atm
Explanation: mmHg to Atmosphere Conversion Example. Task: Convert 975 mmHg to atmospheres (show work) Formula: mmHg ÷ 760 = atm Calculations: 975 mmHg ÷ 760 = 1.28289474 atm Result: 975 mmHg is equal to 1.28289474 atm. This is an example for how i got the answer.