In sulfur dioxide, there are 2 oxygen atoms and 1 sulfur atom. As there are 32g of sulfur and 32g of oxygen, that would mean that each oxygen atom would weigh about 16g. Given that, the mass of a single sulfur atom is twice that of a single oxygen atom.
Answer:
a=2.304×10¹⁶m/s²
Explanation:
Given data
Distance d=2.5 nm=2,5×10⁻⁹m
Mass of proton m=1.6×10⁻²⁷kg
charge of proton q=1.6×10⁻¹⁹C
To find
acceleration a
Solution
Apply the Coulombs Law

Where k is coulombs constant (k=9×10⁹Nm²/C²)
q=q₁=q₂
r=d
So
Answer:
The value is
Explanation:
From the question we are told that
The rotational inertia about one end is 
The location of the axis of rotation considered is 
Generally the mass of the portion of the rod from the axis of rotation considered to the end of the rod is 
Generally the length of the rod from the its beginning to the axis of rotation consider is

Generally the mass of the portion of the rod from the its beginning to the axis of rotation consider is

Generally the rotational inertia about the axis of rotation consider for the first portion of the rod is


Generally the rotational inertia about the axis of rotation consider for the second portion of the rod is

=> 
=> 
Generally by the principle of superposition that rotational inertia of the rod at the considered axis of rotation is

=> ![I = \frac{1}{3} ML ^2 [0.6 * (0.6)^2 + 0.4 * (0.4)^2 ]](https://tex.z-dn.net/?f=I%20%3D%20%20%5Cfrac%7B1%7D%7B3%7D%20ML%20%5E2%20%20%5B0.6%20%2A%20%280.6%29%5E2%20%2B%200.4%20%2A%20%280.4%29%5E2%20%5D)
=>