Answer:

Explanation:
In order to solve this question we need to know that
. Then we need to convert 4 minutes into seconds and cm into m. We can do that by multiplying the number of minutes by 60 (because there is 60 seconds in one minute) and dividing the number of cm by 100 (because there is 100 cm in one m). So.......
4min = 4 x 60s = 240s
300cm = 300/100 m = 3m
Now we know that distance = 300m, and that the time = 4min = 240s ⇒
⇒ 
The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
Answer:
<h3>The answer is 12 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>12 m/s²</h3>
Hope this helps you
Answer:
Tension.
<em><u>tension</u></em> is the name of force that opposes or goes opposite of gravity
Hope this helps!
Answer:
While self-gravity pulls the star inward and tries to make it collapse, thermal pressure (heat created by fusion) pushes outward. These two forces cancel each other out in a main sequence star, thus making it stable.
Explanation: