Kinetic energy = (1/2)*mass*velocity^2
KE = (1/2)mv^2
KE = (1/2)(478)(15)^2
KE = 53775J
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.

- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1
The scale is a rest scale reads the support for is not enough net force.
' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.
That's all the physics we need to know to answer this question.
The rest is just arithmetic.
(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)
= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)
= 51,840,000 joules
__________________________________
Wait a minute ! Hold up ! Hee haw ! Whoa !
Excuse me. That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's
(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)
= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)
= 14.4 kW·hour
Rounded to the nearest whole number:
14 kWh