Answer:
Option (e)
Explanation:
A = 45 cm^2 = 0.0045 m^2, d = 0.080 mm = 0.080 x 10^-3 m,
Energy density = 100 J/m
Let Q be the charge on the plates.
Energy density = 1/2 x ε0 x E^2
100 = 0.5 x 8.854 x 10^-12 x E^2
E = 4.75 x 10^6 V/m
V = E x d
V = 4.75 x 10^6 x 0.080 x 10^-3 = 380.22 V
C = ε0 A / d
C = 8.854 x 10^-12 x 45 x 10^-4 / (0.080 x 10^-3) = 4.98 x 10^-10 F
Q = C x V = 4.98 x 10^-10 x 380.22 = 1.9 x 10^-7 C
Q = 190 nC
Answer:
The tangential speed of the tack is 6.988 meters per second.
Explanation:
The tangential speed experimented by the tack (
), measured in meters per second, is equal to the product of the angular speed of the wheel (
), measured in radians per second, and the distance of the tack respect to the rotation axis (
), measured in meters, length that coincides with the radius of the tire. First, we convert the angular speed of the wheel from revolutions per second to radians per second:


Then, the tangential speed of the tack is: (
,
)


The tangential speed of the tack is 6.988 meters per second.
Explanation:
The magnitude of a vector v can be found using Pythagorean's theorem.
||v|| = √(vₓ² + vᵧ²)
||v|| = √((-309)² + (187)²)
||v|| ≈ 361
You can find the angle of a vector using trigonometry.
tan θ = vᵧ / vₓ
tan θ = 187 / -309
θ ≈ 149° or θ ≈ 329°
vₓ is negative and vᵧ is positive, so θ must be in the second quadrant. Therefore, θ ≈ 149°.
L=T2xg/4x3.14^2
16x9.8/4x3.14^2
Used your calculator plz
Answer:
Answers of the Both parts are in the following attachment
Explanation: