1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
2 years ago
9

A 40.0 kg beam is attached to a wall with a hi.nge and its far end is supported by a cable. The angle between the beam and the c

able is 90°. If the beam is inclined at an angle of θ = 31.0° with respect to horizontal.
The horizontal component of the force exerted by the hi.nge on the beam = 8.662×101 N
What is the magnitude of the force that the beam exerts on the hi.nge?
Physics
2 answers:
Nina [5.8K]2 years ago
7 0

The hi.nge will be subjected to a force of 261.12N from the beam.

We must understand the tension in order to choose the solution.

<h3>How can the amount of force the beam applies on the height be determined?</h3>
  • Let's use the provided information to create the system's free body diagram.
  • We need to calculate the force the beam is exerting on the height using the diagram.
  • For this, it is assumed that the horizontal component of force is 86.62N, the same as the horizontal component of the normal reaction that the beam exerts on the height.
  • We need to identify the vertical component of the normal reaction the beam exerts on the height. We must equalize the total force acting in the vertical direction to achieve this.

                       N_y=F_v=mg-Tsin59

  • Finding the tension T is necessary to determine Ny. Thus, we can use the net horizontal force to equate this.

                         F_H=N_x=Tcos59\\T=\frac{F_H}{cos59} =169.84N

  • As a result, the normal reaction that the beam has on the height becomes, with a vertical component,

                  N_y=(40*9.8)-(169.84*sin59)=246.4N

  • As a result, the force the beam applies on the height will be of the order of,

                        N=\sqrt{N_x^2+N_y^2} =261.12N

Thus, we can infer that the force the beam applies to the height is 261.12N in size.

Learn more about the tension here:

brainly.com/question/28106871

#SPJ1

GalinKa [24]2 years ago
4 0

The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.

To find the answer, we need to know about the tension.

<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
  • Let's draw the free body diagram of the system using the given data.
  • From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
  • For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

                           N_x=86.62N

  • We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

                           N_y=F_V=mg-Tsin59\\

  • To find Ny, we need to find the tension T.
  • For this, we can equate the net horizontal force.

                           F_H=N_x=Tcos59\\\\T=\frac{F_H}{cos59} =\frac{86.62}{0.51}= 169.84N

  • Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

                    N_y= (40*9.8)-(169.8*sin59)=246.4N

  • Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

                 N=\sqrt{N_x^2+N_y^2} =\sqrt{(86.62)^2+(246.4)^2}=261.12N

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.

Learn more about the tension here:

brainly.com/question/28106871

#SPJ1

You might be interested in
A bungee jumper starts with 1000 J in their GPE store. After they jump they fall and are brought to a stop with the bungee cord.
pochemuha

Answer:

energy is equal to 1000 J

Explanation:

When the jumper is in the tent, he has a given height, this height gives him a gravitational potential energy, which forms his initial mechanical energy of 1000 J. After jumping, this energy is converted into elastic energy of the rope plus a remainder of potential energy gravitational, it does not reach the ground, but as the friction is negligible the total mechanical energy is conserved, therefore its energy is equal to 1000 J

This is a case of energy transformation, but the total value of mechanical energy does not change

         

8 0
3 years ago
GIVING BRAINLIEST FIVE STARS AND 25 POINTS!
Ne4ueva [31]

Engines can overheat for many reasons. In general, it's because something's wrong within the cooling system and heat isn't able to escape the engine compartment. The source of the issue could include a cooling system leak, faulty radiator fan, broken water pump, or clogged coolant hose.

Hope it helps! Have a nice day or night!

4 0
3 years ago
Read 2 more answers
Why do plants produce their own food
Serhud [2]

Because way back, when there were some kinds of plants that made
their own food, and other kinds of plants that depended on dinosaurs or
people to bring them food, guess which ones starved and became extinct,
and which ones lived and are still among us today.


7 0
3 years ago
Read 2 more answers
How much is the moon in the first quarter actually lit
grandymaker [24]
Half of the moon is illuminated.
8 0
3 years ago
Read 2 more answers
Waves diffract the most when their wavelength is
djverab [1.8K]
<h2>Answer: about the same size of the gap  or slit</h2>

Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.

Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.

In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs.

Therefore:

<h2>Waves diffract the most when their wavelength is <u>about the same size of the gap </u></h2>

<u />

5 0
3 years ago
Other questions:
  • Choose the 200 kg refrigerator. Set the applied force to 400 N (to the right). Be sure friction is turned off.What is the net fo
    7·2 answers
  • A focal arrangement that has a thin lens that the light passes through before traveling down the tube to the objective mirror is
    9·1 answer
  • What is the energy equivalent of an object with a mass of 25 kg?
    10·1 answer
  • If a microwave oven produces electromagnetic waves with a frequency of 2.70 ghz, what is their wavelength?
    13·1 answer
  • An inclined plane is made out of a short plank of wood. It is used to move a 300N box up onto a tabletop 1m above the floor. Wha
    14·2 answers
  • The height of the Empire State Building is 318.00 meters. If a stone is dropped from the top of the building, what is the stone'
    8·1 answer
  • The mcb of rupa's room is tripped and keeps on tripping again and again . if it is a domestic circuit, what could be the reason
    9·1 answer
  • An elevator car has a mass of 750 kg, and its three passengers have a combined mass of 135 kg. If the elevator and its passenger
    9·1 answer
  • Urgent, Please help! Will give brainliest!
    11·1 answer
  • Which atoms have the highest electronegativity?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!