1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
2 years ago
9

A 40.0 kg beam is attached to a wall with a hi.nge and its far end is supported by a cable. The angle between the beam and the c

able is 90°. If the beam is inclined at an angle of θ = 31.0° with respect to horizontal.
The horizontal component of the force exerted by the hi.nge on the beam = 8.662×101 N
What is the magnitude of the force that the beam exerts on the hi.nge?
Physics
2 answers:
Nina [5.8K]2 years ago
7 0

The hi.nge will be subjected to a force of 261.12N from the beam.

We must understand the tension in order to choose the solution.

<h3>How can the amount of force the beam applies on the height be determined?</h3>
  • Let's use the provided information to create the system's free body diagram.
  • We need to calculate the force the beam is exerting on the height using the diagram.
  • For this, it is assumed that the horizontal component of force is 86.62N, the same as the horizontal component of the normal reaction that the beam exerts on the height.
  • We need to identify the vertical component of the normal reaction the beam exerts on the height. We must equalize the total force acting in the vertical direction to achieve this.

                       N_y=F_v=mg-Tsin59

  • Finding the tension T is necessary to determine Ny. Thus, we can use the net horizontal force to equate this.

                         F_H=N_x=Tcos59\\T=\frac{F_H}{cos59} =169.84N

  • As a result, the normal reaction that the beam has on the height becomes, with a vertical component,

                  N_y=(40*9.8)-(169.84*sin59)=246.4N

  • As a result, the force the beam applies on the height will be of the order of,

                        N=\sqrt{N_x^2+N_y^2} =261.12N

Thus, we can infer that the force the beam applies to the height is 261.12N in size.

Learn more about the tension here:

brainly.com/question/28106871

#SPJ1

GalinKa [24]2 years ago
4 0

The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.

To find the answer, we need to know about the tension.

<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
  • Let's draw the free body diagram of the system using the given data.
  • From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
  • For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

                           N_x=86.62N

  • We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

                           N_y=F_V=mg-Tsin59\\

  • To find Ny, we need to find the tension T.
  • For this, we can equate the net horizontal force.

                           F_H=N_x=Tcos59\\\\T=\frac{F_H}{cos59} =\frac{86.62}{0.51}= 169.84N

  • Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

                    N_y= (40*9.8)-(169.8*sin59)=246.4N

  • Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

                 N=\sqrt{N_x^2+N_y^2} =\sqrt{(86.62)^2+(246.4)^2}=261.12N

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.

Learn more about the tension here:

brainly.com/question/28106871

#SPJ1

You might be interested in
Difference between rest and motion​
creativ13 [48]
Rest - it is the state in which body doesn’t move from it’s place

motion - it is the state in which body moves from it’s place
3 0
3 years ago
A glider with mass m = 0.230 kg sits on a frictionless horizontal air track, connected to a spring with force constant k = 4.50
loris [4]

Answer

given,

mass of glider = 0.23 Kg

spring constant = k = 4.50 N/m

spring stretched to 0.130 m

The springs potential energy =

 U = \dfrac{1}{2}kx^2

 U = \dfrac{1}{2}\times 4.5 \times 0.13^2

        U = 0.038 J

at x = 0,the only energy will be kinetic .

 \dfrac{1}{2}mv^2=0.038

 \dfrac{1}{2}\times 0.23 \times v^2=0.038

         v² = 0.3304

         v = 0.575 m/s

displacement of the glider

      using conservation of energy

 \dfrac{1}{2}mv^2=\dfrac{1}{2}kx^2

 x =v\sqrt{\dfrac{m}{k}}

 x =3\times \sqrt{\dfrac{0.23}{4.5}}

        x = 0.678 m

8 0
3 years ago
For safety reasons, a worker’s eye travel time in a certain operation must be separated from the manual elements that follow. Th
iogann1982 [59]

Answer:

The answer is 12.67 TMU

Explanation:

Recall that,

worker’s eyes travel  distance must be = 20 in.

The perpendicular distance from her eyes to the line of travel is =24 in

What is the MTM-1 normal time in TMUs that should be allowed for the eye travel element = ?

Now,

We solve for the given problem.

Eye travel is = 15.2 * T/D

=15.2 * 20 in/24 in

so,

= 12.67 TMU

Therefore, the MTM -1 of normal time that should be allowed for the eye  travel element is = 12.67 TMU

7 0
3 years ago
When a golf ball is hit, it travels at 41 meters per second. The mass of a golf ball is 0.045kg. Calculate the kinetic energy of
Fittoniya [83]

Answer:

  75.645 J

Explanation:

The kinetic energy is related to the mass and velocity by the formula ...

  KE = 1/2mv²

For the given mass of 0.045 kg, and velocity of 41 m/s, the kinetic energy is ...

  KE = 1/2(0.045 kg)(41 m/s)² = 75.645 J

__

The unit of energy, joule, is a derived unit equal to 1 kg·m²/s².

4 0
2 years ago
A cylindrical water tank has a diameter of 9 ft and a height of 12 ft. the water surface is 2 ft from the top. about how much wa
slavikrds [6]
I think the answer your looking for is 636 ft ^3
3 0
3 years ago
Read 2 more answers
Other questions:
  • an object 8.25 cm from a lens creates a virtual image of magnification 2.40 what is the focal length of the lens (mind your minu
    13·1 answer
  • What is the electric potential of a 2.2 µC charge at a distance of 6.3 m from the charge? Recall that Coulomb’s constant is k =
    12·2 answers
  • A 0.145-kg baseball pitched horizontally at 27.0 m/s strikes a bat and pops straight up to a height of 31.5 m. If the contact ti
    12·1 answer
  • Please help on this one
    15·1 answer
  • After brainstorming, engineers may refine their ideas by making what???
    12·1 answer
  • A rigid tank contains 2 kg of an ideal gas at 4 atm and 40 C. Now a valve is opened, and half of the mass of the gas is allowed
    8·1 answer
  • What is one main difference between animal cells and plant cells?
    14·1 answer
  • A block of mass 2 kg is launched by compressing a spring of force constant 1200 N/m. The block slides on a frictionless surface,
    14·1 answer
  • Complete play the table by writing the location orientation size and type of image formed by the lenses below.
    15·1 answer
  • A cat (5kg) has a potential energy of 8J. The cat is stuck on top of a bookshelf and then falls off the bookshelf. What is the v
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!